Many previous studies have addressed the problem of theoretically approximating the shock standoff distance; however, limitations to these methods fail to produce excellent results across the entire range of Mach numbers. This paper proposes an alternative approach for approximating the shock standoff distance for supersonic flows around a circular cylinder. It follows the philosophy that the “modified Newtonian impact theory” can be used to calculate the size of the sonic zone bounded between the bow shock and the fore part of the body and that the variation of the said zone is related to the standoff distance as a function of the upstream Mach number. Consequently, a reduction rate parameter for the after-shock subsonic region and a reduction rate parameter for the shock standoff distance are introduced to formulate such a relation, yielding a new expression for the shock standoff distance given in Equation (32). It is directly determined by the upstream Mach number and the location of the sonic point at the body surface. The shock standoff distance found by this relation is compared with the numerical solutions obtained by solving the two-dimensional inviscid Euler equations, and with previous experimental results for Mach numbers from 1.35 to 6, and excellent and consistent agreement is achieved across this range of Mach numbers.

1.
G.
Moretti
, “
Computation of flows with shocks
,”
Annu. Rev. Fluid Mech.
19
,
313
337
(
1987
).
2.
W. E.
Moeckel
, “
Approximate method for predicting the form and location of detached shock waves ahead of plane or axially symmetrical bodies
,” NACA Technical Note 1921,
1949
.
3.
K.
Hida
, “
An approximate study of the detached shock wave in front of a circular cylinder and a sphere
,”
J. Phys. Soc. Japan
8
,
740
745
(
1953
).
4.
M. J.
Lighthill
, “
Dynamics of a dissociating gas. Part I: Equilibrium flow
,”
J. Fluid Mech.
2
,
1
32
(
1957
).
5.
M.
Alperin
, “
A study of detached shock waves in two-dimensions
,” Ph.D. thesis,
CIT
,
1950
.
6.
M. D.
Van Dyke
, “
The supersonic blunt-body problem—Review and extension
,”
J. Aerosp. Sci.
25
,
485
496
(
1958
).
7.
C.-S.
Kim
, “
Experimental studies of supersonic flow past a circular cylinder
,”
J. Phys. Soc. Japan
11
(
4
),
439
445
(
1956
).
8.
W. E.
Moeckel
, “
Experimental investigation of supersonic flow with detached shock waves for Mach numbers between 1.8 and 2.9
,” NACA RM E50D05,
1950
.
9.
J. W.
Heberle
,
G. P.
Wood
, and
P. B.
Gooderum
, “
Data on shape and location of detached shock wave on cones and spheres
,” NACA Technical Note 2000,
1950
.
10.
A. F.
Bryson
, “
An experimental investigation of transonic flow past two-dimensional wedge and circular arc section using a Mach-Zehnder interferometer
,” Ph.D. thesis,
CIT
,
CA
,
1951
.
11.
K.
Hida
, “
Blunt body theory for hypersonic flow
,” Air Force Office of Scientific Research,
Guggenhiem Aeronautical Laboratory, CIT
,
1961
.
12.
G. E.
Kaattari
, “
Predicting shock envelopes about two types of vehicles at large angles of attack
,” NASA Technical Note D-860,
1961
.
13.
W. K.
Osborne
and
F. W.
Crane
, “
Flow field and pressure distribution measurements on blunt-nosed bodies at M=6.8
,” GB Aeronautical Research Council C.P. No. 615,
1962
.
14.
G. E.
Kaattari
, “
A method for predicting shock shapes and pressure distributions for a wide variety of blunt bodies at zero angle of attack
,” NASA Technical Note D-4539,
1968
.
15.
K. S.
Nagaraia
, “
On the shock stand-off distance in an inviscid hypersonic source flow past two-dimensional bluff bodies
,” ARL 71-0303,
1971
.
16.
O. M.
Beletoserkovski
,
Flow Past a Circular Cylinder with a Detached Shock
(
Academy of Sciences
,
Moscow
,
1958
).
17.
F. M.
Hamaker
, “
Numerical solution of the flow of a perfect gas around a circular cylinder at infinite Mach number
,” NASA MEMO 2-25-59A,
1959
.
18.
D. C.
Thoman
and
A. A.
Szewczyk
, “
Time-dependent viscous flow over a circular cylinder
,”
Phys. Fluids
12
,
II-76
(
1969
).
19.
J.-Y.
Yang
,
Y.
Liu
, and
H.
Lomax
, “
A numerical study of shock wave diffraction by a circular cylinder
,” in
AIAA, Aerospace Sciences Meeting
(
AIAA
,
1986
), p.
12
.
20.
H. G.
Hornung
, “
Non-equilibrium dissociating nitrogen flow over spheres and circular cylinders
,”
J. Fluid Mech.
53
,
149
176
(
1972
).
21.
C.-Y.
Wen
and
H. G.
Hornung
, “
Non-equilibrium dissociating flow over spheres
,”
J. Fluid Mech.
299
,
389
405
(
1995
).
22.
R. C. M.
Trivandrum
, “
Numerical investigation of viscous flow over a hemisphere-cylinder
,”
Acta Mech.
128
(
1-2
),
49
58
(
1998
).
23.
T.
Mizukaki
, “
Detached shock waves around cylinders flying at Mach number ranging from 1 to 2
,”
J. Visualization
11
(
2
),
133
141
(
2008
).
24.
M.
Sharma
,
A. B.
Swantek
,
W.
Flaherty
,
J. M.
Austin
,
S.
Doraiswamy
, and
G. V.
Candler
, “
Experimental and numerical investigations of hypervelocity carbon dioxide flow over blunt bodies
,”
J. Thermophys. Heat Transfer
24
,
673
683
(
2010
).
25.
F.
Zander
,
R. J.
Gollan
,
P. A.
Jacobs
, and
R. G.
Morgan
, “
Hypervelocity shock standoff on spheres in air
,”
Shock Waves
24
,
171
178
(
2014
).
26.
T.
Nagata
,
T.
Nonomura
,
S.
Takahashi
,
Y.
Mizuno
, and
K.
Fukuda
, “
Investigation on subsonic to supersonic flow around a sphere at low Reynolds number of between 50 and 300 by direct numerical simulation
,”
Phys. Fluids
28
,
056101
(
2016
).
27.
J. M. N. T.
Gray
,
Y.-C.
Tai
, and
S.
Noelle
, “
Shock waves, dead-zones and particle-free regions in rapid granular free surface flows
,”
J. Fluid Mech.
491
,
161
181
(
2003
).
28.
J. M. N. T.
Gray
and
X.
Cui
, “
Weak, strong and detached oblique shocks in gravity-driven granular free-surface flows
,”
J. Fluid Mech.
579
,
113
136
(
2007
).
29.
J. F.
Boudet
,
Y.
Amarouchene
, and
H.
Kellay
, “
Shock front width and structure in supersonic granular flows
,”
Phys. Rev. Lett.
101
,
254503
(
2008
).
30.
S. H.
Chou
,
L. S.
Lu
, and
S. S.
Hsiau
, “
DEM simulation of oblique shocks in gravity-driven granular flows with wedge obstacles
,”
Granular Matter
14
,
719
732
(
2012
).
31.
K. M.
Hákonardóttir
and
A. J.
Hogg
, “
Oblique shocks in rapid granular flows
,”
Phys. Fluids
17
,
0077101
(
2005
).
32.
P.
Heil
,
E. C.
Rericha
,
D. I.
Goldman
, and
H. L.
Swinney
, “
Mach cone in a shallow granular fluid
,”
Phys. Rev. E
70
,
060301
(
2004
).
33.
D. A.
Padgett
,
A. P.
Mazzoleni
, and
S. D.
Faw
, “
Survey of shock-wave structures of smooth-particle granular flows
,”
Phys. Rev. E
92
,
062209
(
2015
).
34.
S. P.
Pudasaini
and
C.
Kröner
, “
Shock waves in rapid flows of dense granular materials: Theoretical predictions and experimental results
,”
Phys. Rev. E
78
,
041308
(
2008
).
35.
X.
Cui
, “
Computational and experimental studies of rapid free-surface granular flows around obstacles
,”
Comput. Fluids
89
,
179
190
(
2014
).
36.
X.
Cui
and
J. M. N. T.
Gray
, “
Gravity-driven granular free-surface flow around a circular cylinder
,”
J. Fluid Mech.
720
,
314
337
(
2013
).
37.
M.
Abbett
and
G.
Moretti
, “
A time-dependent computational method for blunt body flows
,”
AIAA J.
4
(
12
),
2136
2141
(
1966
).
38.
A.
Harten
, “
High resolution schemes for hyperbolic conservation laws
,”
J. Comput. Phys.
49
,
357
393
(
1983
).
39.
H.
Nessyahu
and
E.
Tadmor
, “
Non-oscillatory central differencing for hyperbolic conservation laws
,”
J. Comput. Phys.
87
,
408
463
(
1990
).
40.
P. L.
Roe
, “
Approximate Riemann solvers, parameter vectors, and difference schemes
,”
J. Comput. Phys.
43
(
2
),
357
372
(
1981
).
41.
S. K.
Godunov
, “
A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics
,”
Mat. Sb
47
,
271
306
(
1959
).
42.
J. F.
Daunenhofer
and
J. R.
Baron
, “
Grid adaption for the 2D Euler equations
,” AIAA Paper No. 85-0484,
1985
.
43.
M. D.
Salas
, “
Recent developments in transonic Euler flow over a circular cylinder
,” NASA TM 83282,
1982
.
44.
M.
Pandolfi
and
F.
Larocca
, “
Transonic flow about a circular cylinder
,”
Comput. Fluids
17
,
205
220
(
1989
).
45.
N.
Botta
, “
The inviscid transonic flow about a cylinder
,”
J. Fluid Mech.
301
,
225
250
(
1995
).
46.
M.
Hafez
and
E.
Wahba
, “
Inviscid flows over a cylinder
,”
Comput. Methods Appl. Mech. Eng.
193
,
1981
1995
(
2004
).
47.
L.
Lees
, “
On the Boundary Layer Equations in Hypersonic Flow and their Approximate Solutions
,” in
Proceedings of the 5th International Aeronautical Conference (IAS-RAS)
, Hypersonic Flow,
J. Aero. Sci.
20
,
143
145
(
1953
).
48.
R. K.
Lobb
, “
Experimental measurement of shock detachment distance on spheres fired in air at hypervelocities
,” Defense Technical Information Center,
1962
.
49.
H.
Olivier
, “
A theoretical model for the shock stand-off distance in frozen and equilibrium flows
,”
J. Fluid Mech.
413
,
345
353
(
2000
).
50.
L. K.
Forbes
and
L. W.
Schwartz
, “
Supercritical flow past blunt bodies in shallow water
,”
Z. Angew. Math. Phys.
32
,
314
328
(
1981
).
51.
A.
Jameson
,
W.
Schmidt
, and
E.
Turkel
, “
Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes
,” AIAA Paper No. 81-1259,
1981
.
52.
Y.-X.
Ren
, “
A robust shock-capturing scheme based on rotated Riemann solvers
,”
Comput. Fluids
32
,
1379
1403
(
2003
).
53.
W. K.
Anderson
, “
Grid generation and flow solution method for Euler equations on unstructured grids
,” NASA/TM 4295,
1992
.
54.
W. K.
Anderson
and
D. L.
Bonhaus
, “
An implicit upwind algorithm for computing turbulent flows on unstructured grids
,”
Comput. Fluids
23
(
1
),
1
21
(
1994
).
55.
J. R.
Carlson
, “
Inflow/outflow boundary conditions with application to FUN3D
,” NASA/TM-2011–217181,
2011
.
You do not currently have access to this content.