The decomposition proposed by Lumley in 1966 is applied to a high Reynolds number turbulent boundary layer. The experimental database was created by a hot-wire rake of 143 probes in the Laboratoire de Mécanique de Lille wind tunnel. The Reynolds numbers based on momentum thickness (Reθ) are 9800 and 19 100. Three-dimensional decomposition is performed, namely, proper orthogonal decomposition (POD) in the inhomogeneous and bounded wall-normal direction, Fourier decomposition in the homogeneous spanwise direction, and Fourier decomposition in time. The first POD modes in both cases carry nearly 50% of turbulence kinetic energy when the energy is integrated over Fourier dimensions. The eigenspectra always peak near zero frequency and most of the large scale, energy carrying features are found at the low end of the spectra. The spanwise Fourier mode which has the largest amount of energy is the first spanwise mode and its symmetrical pair. Pre-multiplied eigenspectra have only one distinct peak and it matches the secondary peak observed in the log-layer of pre-multiplied velocity spectra. Energy carrying modes obtained from the POD scale with outer scaling parameters. Full or partial reconstruction of turbulent velocity signal based only on energetic modes or non-energetic modes revealed the behaviour of urms in distinct regions across the boundary layer. When urms is based on energetic reconstruction, there exists (a) an exponential decay from near wall to log-layer, (b) a constant layer through the log-layer, and (c) another exponential decay in the outer region. The non-energetic reconstruction reveals that urms has (a) an exponential decay from the near-wall to the end of log-layer and (b) a constant layer in the outer region. Scaling of urms using the outer parameters is best when both energetic and non-energetic profiles are combined.

1.
J. L.
Lumley
, “
The structure of inhomogeneous turbulent flows
,” in
Atmospheric Turbulence and Radio Wave Propagation
, edited by
A. M.
Yaglom
and
V. I.
Tatarsky
(
Publishing House Nauka
,
Moscow, USSR
,
1967
), pp.
166
176
.
2.
W. K.
George
, “
A 50-year retrospective and the future
,” in
Whither Turbulence and Big Data in the 21st Century
, edited by
A.
Pollard
,
L.
Castillo
,
L.
Danaila
, and
M.
Glauser
(
Springer
,
2017
), pp.
13
43
.
3.
M. N.
Glauser
and
W. K.
George
, “
Orthogonal decomposition of the axisymmetric jet mixing layer including azimuthal dependence
,” in
Advances in Turbulence
, edited by
G.
Comte-Bellot
and
J.
Mathieu
(
Springer
,
Berlin
,
1987
), pp.
357
366
.
4.
M. N.
Glauser
,
S. J.
Leib
, and
W. K.
George
, “
Coherent structures in the axisymmetric turbulent jet mixing layer
,” in
Turbulent Shear Flows 5
, edited by
F.
Durst
,
B. E.
Launder
,
J. H.
Lumley
,
F. W.
Schmidt
, and
J. H.
Whitelaw
(
Springer-Verlag
,
1985
), pp.
134
145
.
5.
J. H.
Citriniti
and
W. K.
George
, “
Reconstruction of the global velocity field in the axisymmetric mixing layer utilizing the proper orthogonal decomposition
,”
J. Fluid Mech.
418
,
137
166
(
2000
).
6.
D.
Jung
,
S.
Gamard
, and
W. K.
George
, “
Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 1. The near-field region
,”
J. Fluid Mech.
514
,
173
204
(
2004
).
7.
S.
Gamard
,
D.
Jung
, and
W. K.
George
, “
Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 2. The far-field region
,”
J. Fluid Mech.
514
,
205
230
(
2004
).
8.
P. B. V.
Johansson
and
W. K.
George
, “
The far downstream evolution of the high Reynolds number axisymmetric wake behind a disk. Part 2. Slice proper orthogonal decomposition
,”
J. Fluid Mech.
555
,
387
408
(
2006
).
9.
M.
Wänström
,
W. K.
George
, and
K.-E.
Meyer
, “
Stereoscopic PIV and POD applied to far turbulent axisymmetric jet
,” AIAA Paper 2006-3368,
2006
.
10.
M.
Tutkun
,
P. B. V.
Johansson
, and
W. K.
George
, “
Three-component vectorial proper orthogonal decomposition of axisymmetric wake behind a disk
,”
AIAA J.
46
(
5
),
1118
1134
(
2008
).
11.
W. K.
George
, “
Insight into the dynamics of coherent structures from a proper orthogonal decomposition
,” in
The Structure of Near Wall Turbulence, Proceedings of Symposium on Near Wall Turbulence, Dubrovnik, Yugoslavia, 16-20 May 1988
, edited by
S.
Kline
(
Hemisphere
,
New York
,
1988
), pp.
168
180
.
12.
H. P.
Bakewell
and
J. L.
Lumley
, “
Viscous sublayer and adjacent wall region in turbulent pipe flow
,”
Phys. Fluids
10
(
9
),
1880
1889
(
1967
).
13.
S. J.
Leib
,
M. N.
Glauser
, and
W. K.
George
, “
An application of Lumley’s orthogonal decomposition to the axisymmetric turbulent jet mixing layer
,” in
Proceedings of the 9th Rolla Symposium on Turbulence in Fluids
, edited by
G. L.
Patterson
and
J. L.
Zakin
(
University of Missouri-Rolla
,
Rolla, Missouri
,
1984
).
14.
M. N.
Glauser
, “
Coherent structures in the axisymmetric turbulent jet mixing layer
,” Ph.D. dissertation (
State University of New York at Buffalo
,
1987
).
15.
S.
Herzog
, “
The large scale structure in the near-wall region of turbulent pipe flow
,” Ph.D. dissertation (
Cornell University
,
Ithaca, NY
,
1986
).
16.
P.
Moin
and
R. D.
Moser
, “
Characteristic-eddy decomposition of turbulence in a channel
,”
J. Fluid Mech.
200
,
471
509
(
1989
).
17.
J.
Delville
, “
Characterization of the organization in shear layers via the proper orthogonal decomposition
,”
Appl. Sci. Res.
53
,
263
281
(
1994
).
18.
J.
Delville
,
L.
Ukeiley
,
L.
Cordier
,
J. P.
Bonnet
, and
M.
Glauser
, “
Examination of large-scale structures in a turbulent plane mixing layer. Part 1. Proper orthogonal decomposition
,”
J. Fluid Mech.
391
,
91
122
(
1999
).
19.
S. V.
Gordeyev
and
F. O.
Thomas
, “
Coherent structure in the turbulent planar jet. Part 1. Extraction of proper orthogonal decomposition eigenmodes and their self-similarity
,”
J. Fluid Mech.
414
,
145
194
(
2000
).
20.
M. O.
Iqbal
and
F. O.
Thomas
, “
Coherent structure in a turbulent jet via a vector implementation of the proper orthogonal decomposition
,”
J. Fluid Mech.
571
,
281
326
(
2007
).
21.
R. L.
LeBoeuf
, “
Application of the proper orthogonal decomposition techniques to an annular cascade flow field
,” Ph.D. dissertation (
State University of New York at Buffalo
,
1991
).
22.
L.
Ukeiley
,
M.
Glauser
, and
D.
Wick
, “
Downstream evolution of proper orthogonal decomposition eigenfunctions in a lobed mixer
,”
AIAA J.
31
(
8
),
1392
1397
(
1993
).
23.
Z. C.
Liu
,
R. J.
Adrian
, and
T. J.
Hanratty
, “
Reynolds number similarity of orthogonal decomposition of the outer layer of turbulent wall flow
,”
Phys. Fluids
6
(
8
),
2815
2819
(
1994
).
24.
L. H. O.
Hellström
and
A. J.
Smits
, “
The energetic motions in turbulent pipe flow
,”
Phys. Fluids
26
(
12
),
125102
(
2014
).
25.
R.
Gurka
,
A.
Liberzon
, and
G.
Hetsroni
, “
POD of vorticity fields: A method for spatial characterization of coherent structures
,”
Int. J. Heat Fluid Flow
27
(
3
),
416
423
(
2006
).
26.
Z.
Liu
,
R. J.
Adrian
, and
T. J.
Hanratty
, “
Large-scale modes of turbulent channel flow: Transport and structure
,”
J. Fluid Mech.
448
,
53
80
(
2001
).
27.
S. C. C.
Bailey
and
A. J.
Smits
, “
Experimental investigation of the structure of large- and very large-scale motions in turbulent pipe flow
,”
J. Fluid Mech.
651
,
339
356
(
2010
).
28.
L. H. O.
Hellström
,
B.
Ganapathisubramani
, and
A. J.
Smits
, “
The evolution of large-scale motions in turbulent pipe flow
,”
J. Fluid Mech.
779
,
701
715
(
2015
).
29.
J. R.
Baltzer
,
R. J.
Adrian
, and
X.
Wu
, “
Structural organization of large and very large scales in turbulent pipe flow simulation
,”
J. Fluid Mech.
720
,
236
(
2013
).
30.
M.
Tutkun
,
W. K.
George
,
J.
Delville
,
M.
Stanislas
,
P.
Johansson
,
J.-M.
Foucaut
, and
S.
Coudert
, “
Two-point correlations in high Reynolds number flat plate turbulent boundary layers
,”
J. Turbul.
10
,
N21
(
2009
).
31.
M.
Tutkun
,
W. K.
George
,
J. M.
Foucaut
,
S.
Coudert
,
M.
Stanislas
, and
J.
Delville
, “
In situ calibration of hot wire probes in turbulent flows
,”
Exp. Fluids
46
(
4
),
617
629
(
2009
).
32.
S.
Coudert
,
J.-M.
Foucaut
,
J.
Kostas
,
M.
Stanislas
,
P.
Braud
,
C.
Fourment
,
J.
Delville
,
M.
Tutkun
,
F.
Mehdi
,
P.
Johansson
, and
W. K.
George
, “
Double large field stereoscopic PIV in a high Reynolds number turbulent boundary layer
,”
Exp. Fluids
50
(
1
),
1
12
(
2011
).
33.
J.
Carlier
and
M.
Stanislas
, “
Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry
,”
J. Fluid Mech.
535
,
143
188
(
2005
).
34.
M.
Stanislas
,
L.
Perret
, and
J.-M.
Foucaut
, “
Vortical structures in the turbulent boundary layer: A possible route to a universal representation
,”
J. Fluid Mech.
602
,
327
382
(
2008
).
35.
S. H.
Woodward
, “
Progress toward massively parallel thermal anemometry system
,” M.Sc. thesis,
State University of New York at Buffalo
,
2001
.
36.
S. H.
Woodward
,
D.
Ewing
, and
L.
Jernqvist
, “
Anemometer system review
,” in
Sixth Annual Symposium on Thermal Anemometry
,
Melbourne, Australia
,
8-10 January 2001
.
37.
W. K.
George
2 suggests calling this the “Lumley integral” instead of the more customary “POD integral,” since the solutions are proper only for the inhomogeneous directions.
38.
P.
Holmes
,
J. H.
Lumley
, and
G.
Berkooz
, “
Turbulence, coherent structures
,”
Dynamical Systems and Symmetry
(
Cambridge University Press
,
UK
,
1996
).
39.
W. K.
George
and
L.
Castillo
, “
Zero pressure gradient turbulent boundary layer
,”
Appl. Mech. Rev.
50
(
12
),
689
729
(
1997
).
40.
M.
Wosnik
,
L.
Castillo
, and
W. K.
George
, “
A theory for turbulent pipe and channel flows
,”
J. Fluid Mech.
421
,
115
145
(
2000
).
41.
R. F.
Blackwelder
and
L. S. G.
Kovaszny
, “
Time scales and correlations in a turbulent boundary layer
,”
Phys. Fluids
15
(
9
),
1545
1554
(
1972
).
42.
M.
Guala
,
S. E.
Hommema
, and
R. J.
Adrian
, “
Large-scale and very-large-scale motions in turbulent pipe flow
,”
J. Fluid Mech.
554
,
521
542
(
2006
).
43.
J. P.
Monty
,
J. A.
Stewart
,
R. C.
Williams
, and
M. S.
Chong
, “
Large-scale features in turbulent pipe and channel flows
,”
J. Fluid Mech.
589
,
147
156
(
2007
).
44.
K. C.
Kim
and
R. J.
Adrian
, “
Very large-scale motion in the outer layer
,”
Phys. Fluids
11
(
2
),
417
422
(
1999
).
45.
J. C.
del Álamo
and
J.
Jimenez
, “
Spectra of the very large anisotropic scales in turbulent channels
,”
Phys. Fluids
15
(
6
),
L41
L44
(
2003
).
46.
B. J.
Balakumar
and
R. J.
Adrian
, “
Large- and very-large-scale motions in channel and boundary-layer flows
,”
Philos. Trans. R. Soc., A
365
,
665
681
(
2007
).
47.
R. J.
Adrian
, “
Hairpin vortex organization in wall turbulence
,”
Phys. Fluids
19
,
041301
(
2007
).
48.
A. A.
Townsend
,
The Structure of Turbulent Shear Flow
, 2nd ed. (
Cambridge University Press
,
United Kingdom
,
1976
).
49.
R. F.
Blackwelder
and
R. E.
Kaplan
, “
On the wall structure of the turbulent boundary layer
,”
J. Fluid Mech.
76
,
89
112
(
1976
).
50.
R.
Mathis
,
N.
Hutchins
, and
I.
Marusic
, “
Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers
,”
J. Fluid Mech.
628
,
311
337
(
2009
).
You do not currently have access to this content.