Most evaporation experiments using artificial porous media have focused on single capillaries or sand packs. We have carried out, for the first time, evaporation studies on a 2.5D micromodel based on a thin section of a sucrosic dolomite rock. This allowed direct visual observation of pore-scale processes in a network of pores. NaCl solutions from 0 wt. % (de-ionized water) to 36 wt. % (saturated brine) were evaporated by passing dry air through a channel in front of the micromodel matrix. For de-ionized water, we observed the three classical periods of evaporation: the constant rate period (CRP) in which liquid remains connected to the matrix surface, the falling rate period, and the receding front period, in which the capillary connection is broken and water transport becomes dominated by vapour diffusion. However, when brine was dried in the micromodel, we observed that the length of the CRP decreased with increasing brine concentration and became almost non-existent for the saturated brine. In the experiments with brine, the mass lost by evaporation became linear with the square root of time after the short CRP. However, this is unlikely to be due to capillary disconnection from the surface of the matrix, as salt crystals continued to be deposited in the channel above the matrix. We propose that this is due to salt deposition at the matrix surface progressively impeding hydraulic connectivity to the evaporating surface.

1.
H.
Ott
,
S. M.
Roels
, and
K.
de Kloe
, “
Salt precipitation due to supercritical gas injection: I. Capillary-driven flow in unimodal sandstone
,”
Int. J. Greenhouse Gas Control
43
,
247
255
(
2015
).
2.
P.
Lehmann
,
S.
Assouline
, and
D.
Or
, “
Characteristic lengths affecting evaporative drying of porous media
,”
Phys. Rev. E
77
(
5
),
056309
(
2008
).
3.
N.
Shokri
,
P.
Lehmann
, and
D.
Or
, “
Liquid-phase continuity and solute concentration dynamics during evaporation from porous media: Pore-scale processes near vaporization surface
,”
Phys. Rev. E
81
(
4
),
046308
(
2010
).
4.
F.
Chauvet
,
P.
Duru
,
S.
Geoffroy
, and
M.
Prat
, “
Three periods of drying of a single square capillary tube
,”
Phys. Rev. Lett.
103
(
12
),
124502
(
2009
).
5.
J.
Van Brakel
, “
Mass transfer in convective drying
,”
Adv. Drying
1
,
217
267
(
1980
).
6.
G. W.
Scherer
, “
Theory of drying
,”
J. Am. Ceram. Soc.
73
(
1
),
3
14
(
1990
).
7.
M.
Prat
, “
Recent advances in pore-scale models for drying of porous media
,”
Chem. Eng. J.
86
(
1
),
153
164
(
2002
).
8.
A.
Yiotis
,
A.
Stubos
,
A.
Boudouvis
,
I.
Tsimpanogiannis
, and
Y.
Yortsos
, “
Pore-network modeling of isothermal drying in porous media
,”
Transp. Porous Media
58
(
1
),
63
86
(
2005
).
9.
N.
Shokri
,
P.
Lehmann
, and
D.
Or
, “
Critical evaluation of enhancement factors for vapor transport through unsaturated porous media
,”
Water Resour. Res.
45
(
10
),
W10433
, https://doi.org/10.1029/2009wr007769 (
2009
).
10.
N.
Shahidzadeh-Bonn
,
S.
Rafaï
,
D.
Bonn
, and
G.
Wegdam
, “
Salt crystallization during evaporation: Impact of interfacial properties
,”
Langmuir
24
(
16
),
8599
8605
(
2008
).
11.
C.
Rodriguez-Navarro
and
E.
Doehne
, “
Salt weathering: Influence of evaporation rate, supersaturation and crystallization pattern
,”
Earth Surf. Processes Landforms
24
(
3
),
191
209
(
1999
).
12.
D.
Everett
, “
The thermodynamics of frost damage to porous solids
,”
Trans. Faraday Soc.
57
,
1541
1551
(
1961
).
13.
A.
Goudie
and
H. A.
Viles
,
Salt Weathering Hazard
(
Wiley
,
1997
).
14.
G. W.
Scherer
, “
Stress from crystallization of salt
,”
Cem. Concr. Res.
34
(
9
),
1613
1624
(
2004
).
15.
H.
Huinink
,
L.
Pel
, and
M. A. J.
Michels
, “
How ions distribute in a drying porous medium: A simple model
,”
Phys. Fluids
14
(
4
),
1389
1395
(
2002
).
16.
M.
Steiger
, “
Crystal growth in porous materials—I: The crystallization pressure of large crystals
,”
J. Cryst. Growth
282
(
3
),
455
469
(
2005
).
17.
N.
Shahidzadeh-Bonn
,
J.
Desarnaud
,
F.
Bertrand
,
X.
Chateau
, and
D.
Bonn
, “
Damage in porous media due to salt crystallization
,”
Phys. Rev. E
81
(
6
),
066110
(
2010
).
18.
V. N.
Wong
,
R. C.
Dalal
, and
R. S.
Greene
, “
Salinity and sodicity effects on respiration and microbial biomass of soil
,”
Biol. Fertil. Soils
44
(
7
),
943
953
(
2008
).
19.
J.
Desarnaud
,
H.
Derluyn
,
L.
Molari
,
S.
de Miranda
,
V.
Cnudde
, and
N.
Shahidzadeh
, “
Drying of salt contaminated porous media: Effect of primary and secondary nucleation
,”
J. Appl. Phys.
118
(
11
),
114901
(
2015
).
20.
N.
Muller
,
R.
Qi
,
E.
Mackie
,
K.
Pruess
, and
M. J.
Blunt
, “
CO2 injection impairment due to halite precipitation
,”
Energy Procedia
1
(
1
),
3507
3514
(
2009
).
21.
M.
Bergstad
and
N.
Shokri
, “
Evaporation of NaCl solution from porous media with mixed wettability
,”
Geophys. Res. Lett.
43
(
9
),
4426
4432
, https://doi.org/10.1002/2016gl068665 (
2016
).
22.
H.
Eloukabi
,
N.
Sghaier
,
M.
Prat
, and
S.
Ben Nassrallah
, “
Drying experiments in a hydrophobic model porous medium in the presence of a dissolved salt
,”
Chem. Eng. Technol.
34
(
7
),
1085
1094
(
2011
).
23.
H.
Eloukabi
,
N.
Sghaier
,
S. B.
Nasrallah
, and
M.
Prat
, “
Experimental study of the effect of sodium chloride on drying of porous media: The crusty–patchy efflorescence transition
,”
Int. J. Heat Mass Transfer
56
(
1
),
80
93
(
2013
).
24.
S.
Veran-Tissoires
,
M.
Marcoux
, and
M.
Prat
, “
Discrete salt crystallization at the surface of a porous medium
,”
Phys. Rev. Lett.
108
(
5
),
054502
(
2012
).
25.
N.
Sghaier
and
M.
Prat
, “
Effect of efflorescence formation on drying kinetics of porous media
,”
Transp. Porous Media
80
(
3
),
441
454
(
2009
).
26.
L.
Guglielmini
,
A.
Gontcharov
,
A. J.
Aldykiewicz
, Jr.
, and
H. A.
Stone
, “
Drying of salt solutions in porous materials: Intermediate-time dynamics and efflorescence
,”
Phys. Fluids
20
(
7
),
077101
(
2008
).
27.
S.
Gupta
,
H. P.
Huinink
,
M.
Prat
,
L.
Pel
, and
K.
Kopinga
, “
Paradoxical drying of a fired-clay brick due to salt crystallization
,”
Chem. Eng. Sci.
109
,
204
211
(
2014
).
28.
S.
Veran-Tissoires
and
M.
Prat
, “
Evaporation of a sodium chloride solution from a saturated porous medium with efflorescence formation
,”
J. Fluid Mech.
749
,
701
749
(
2014
).
29.
F.
Hidri
,
N.
Sghaier
,
H.
Eloukabi
,
M.
Prat
, and
S. B.
Nasrallah
, “
Porous medium coffee ring effect and other factors affecting the first crystallisation time of sodium chloride at the surface of a drying porous medium
,”
Phys. Fluids
25
(
12
),
127101
(
2013
).
30.
U.
Nachshon
,
N.
Weisbrod
,
M. I.
Dragila
, and
A.
Grader
, “
Combined evaporation and salt precipitation in homogeneous and heterogeneous porous media
,”
Water Resour. Res.
47
(
3
),
W03513
, https://doi.org/10.1029/2010wr009677 (
2011
).
31.
A.
Naillon
,
P.
Duru
,
M.
Marcoux
, and
M.
Prat
, “
Evaporation with sodium chloride crystallization in a capillary tube
,”
J. Cryst. Growth
422
,
52
61
(
2015
).
32.
J.
Desarnaud
,
H.
Derluyn
,
J.
Carmeliet
,
D.
Bonn
, and
N.
Shahidzadeh
, “
Metastability limit for the nucleation of NaCl crystals in confinement
,”
J. Phys. Chem. Lett.
5
(
5
),
890
895
(
2014
).
33.
C.
Marle
,
Multiphase Flow in Porous Media
(
Éditions TECHNIP
,
1981
).
34.
T. M.
Squires
and
S. R.
Quake
, “
Microfluidics: Fluid physics at the nanoliter scale
,”
Rev. Mod. Phys.
77
(
3
),
977
(
2005
).
35.
J.
Stefan
, “
On the equilibrium and movement of gas mixtures, in particular diffusion
,”
Sitzungsber. Kais. Akad. Wiss. Wien
63
,
63
124
(
1871
).
36.
B.
Camassel
,
N.
Sghaier
,
M.
Prat
, and
S. B.
Nasrallah
, “
Evaporation in a capillary tube of square cross-section: Application to ion transport
,”
Chem. Eng. Sci.
60
(
3
),
815
826
(
2005
).
37.
M.
Kim
,
A.
Sell
, and
D.
Sinton
, “
Aquifer-on-a-chip: Understanding pore-scale salt precipitation dynamics during CO2 sequestration
,”
Lab Chip
13
(
13
),
2508
2518
(
2013
).
38.
N.
Vorhauer
,
Y.
Wang
,
A.
Kharaghani
,
E.
Tsotsas
, and
M.
Prat
, “
Drying with formation of capillary rings in a model porous medium
,”
Transp. Porous Media
110
(
2
),
197
223
(
2015
).
39.
J. B.
Laurindo
and
M.
Prat
, “
Numerical and experimental network study of evaporation in capillary porous media. Drying rates
,”
Chem. Eng. Sci.
53
(
12
),
2257
2269
(
1998
).
40.
J. B.
Laurindo
and
M.
Prat
, “
Numerical and experimental network study of evaporation in capillary porous media. Phase distributions
,”
Chem. Eng. Sci.
51
(
23
),
5171
5185
(
1996
).
41.
C.
Chen
,
P.
Duru
,
P.
Joseph
,
S.
Geoffroy
, and
M.
Prat
, “
Control of evaporation by geometry in capillary structures. From confined pillar arrays in a gap radial gradient to phyllotaxy-inspired geometry
,”
Sci. Rep.
7
(
1
),
15110
(
2017
).
42.
P.
Fantinel
,
O.
Borgman
,
R.
Holtzman
, and
L.
Goehring
, “
Drying in a microfluidic chip: Experiments and simulations
,”
Sci. Rep.
7
(
1
),
15572
(
2017
).
43.
G.
Karniadakis
and
A.
Beskok
,
Micro Flows: Fundamentals and Simulation
(
Springer Verlag
,
New York, NY
,
2002
).
44.
P.
van Hemert
,
E. S. J.
Rudolph
, and
P. L.
Zitha
, “
Micro computer tomography study of potassium iodide precipitation in Bentheimer sandstone caused by flow-through CO2 drying
,”
Energy Procedia
37
,
3331
3346
(
2013
).
45.
S. M.
Roels
,
H.
Ott
, and
P. L.
Zitha
, “
μ-CT analysis and numerical simulation of drying effects of CO2 injection into brine-saturated porous media
,”
Int. J. Greenhouse Gas Control
27
,
146
154
(
2014
).
46.
J.
Hornbrook
,
L.
Castanier
, and
P.
Pettit
, “
Observation of foam/oil interactions in a new, high-resolution micromodel
,” in
SPE Annual Technical Conference and Exhibition
(
Society of Petroleum Engineers
,
1991
).
47.
E.
Rangel-German
and
A.
Kovscek
, “
A micromodel investigation of two-phase matrix-fracture transfer mechanisms
,”
Water Resour. Res.
42
(
3
),
W03401
, https://doi.org/10.1029/2004wr003918 (
2006
).
48.
N.
Shahidzadeh-Bonn
,
A.
Azouni
, and
P.
Coussot
, “
Effect of wetting properties on the kinetics of drying of porous media
,”
J. Phys.: Condens. Matter
19
(
11
),
112101
(
2007
).
49.
M.
Prat
, “
On the influence of pore shape, contact angle and film flows on drying of capillary porous media
,”
Int. J. Heat Mass Transfer
50
(
7
),
1455
1468
(
2007
).
50.
A.
Yiotis
,
A.
Boudouvis
,
A.
Stubos
,
I.
Tsimpanogiannis
, and
Y.
Yortsos
, “
Effect of liquid films on the drying of porous media
,”
AIChE J.
50
(
11
),
2721
2737
(
2004
).
51.
R.
Robinson
, “
The vapour pressures of solutions of potassium chloride and sodium chloride
,”
Trans. R. Soc. N. Z.
75
(
2
),
203
217
(
1945
).
52.
G.
Bacci
,
A.
Korre
, and
S.
Durucan
, “
Experimental investigation into salt precipitation during CO2 injection in saline aquifers
,”
Energy Procedia
4
,
4450
4456
(
2011
).
53.
Y.
Wang
,
E.
Mackie
,
J.
Rohan
,
T.
Luce
,
R.
Knabe
, and
M.
Appel
, “
Experimental study on halite precipitation during CO2 sequestration
,” in
International Symposium of the Society of Core Analysts Held in Noordwijk, The Netherlands
(
The Society of Core Analysts
,
2009
), pp.
27
30
.
54.
Y.
Peysson
,
B.
Bazin
,
C.
Magnier
,
E.
Kohler
, and
S.
Youssef
, “
Permeability alteration due to salt precipitation driven by drying in the context of CO2 injection
,”
Energy Procedia
4
,
4387
4394
(
2011
).
You do not currently have access to this content.