It is well known that rough surfaces trigger prompt splashing and suppress corona splashing on droplet impact. Upon water droplet impact, we experimentally found that a slightly rough substrate triggers corona splashing which is suppressed to prompt splashing by both further increase and further decrease of surface roughness. The nonmonotonic effect of surface roughness on corona splashing weakens with decreasing droplet surface tension. The threshold velocities for prompt splashing and corona splashing are quantified under different conditions including surface roughness, droplet diameter, and droplet surface tension. It is determined that slight roughness significantly enhances both prompt splashing and corona splashing of a water droplet, whereas it weakly affects low-surface-tension droplet splashing. Consistent with previous studies, high roughness triggers prompt splashing and suppresses corona splashing. Further experiments on droplet spreading propose that the mechanism of slight roughness enhancing water droplet splashing is due to the decrease of the wetted area with increasing surface roughness.

1.
A. M.
Worthington
, “
On the forms assumed by drops of liquids falling vertically on a horizontal plate
,”
Proc. R. Soc. London
25
,
261
272
(
1876
).
2.
A. L.
Yarin
, “
Drop impact dynamics: Splashing, spreading, receding, bouncing…
,”
Annu. Rev. Fluid Mech.
38
,
159
192
(
2006
).
3.
S. T.
Thoroddsen
,
T. G.
Etoh
, and
K.
Takehara
, “
High-speed imaging of drops and bubbles
,”
Annu. Rev. Fluid Mech.
40
,
257
285
(
2008
).
4.
C.
Josserand
and
S. T.
Thoroddsen
, “
Drop impact on a solid surface
,”
Annu. Rev. Fluid Mech.
48
,
365
391
(
2016
).
5.
R.
Rioboo
,
C.
Tropea
, and
M.
Marengo
, “
Outcomes from a drop impact on solid surfaces
,”
Atomization Sprays
11
,
155
165
(
2001
).
6.
L.
Xu
,
L.
Barcos
, and
S. R.
Nagel
, “
Splashing of liquids: Interplay of surface roughness with surrounding gas
,”
Phys. Rev. E.
76
,
066311
(
2007
).
7.
A.
Latka
,
A.
Strandburg-Peshkin
,
M. M.
Driscoll
,
C. S.
Stevens
, and
S. R.
Nagel
, “
Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure
,”
Phys. Rev. Lett.
109
,
054501
(
2012
).
8.
E. Q.
Li
,
I. U.
Vakarelski
, and
S. T.
Thoroddsen
, “
Probing the nanoscale: The first contact of an impacting drop
,”
J. Fluid Mech.
785
,
R2
(
2015
).
9.
C. D.
Stow
and
M. G.
Hadfield
, “
An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface
,”
Proc. R. Soc. A.
373
,
419
441
(
1981
).
10.
C.
Mundo
,
M.
Sommerfeld
, and
C.
Tropea
, “
Droplet-wall collisions: Experimental studies of the deformation and breakup process
,”
Int. J. Multiphase Flow
21
,
151
173
(
1995
).
11.
K.
Range
and
F.
Feuillebois
, “
Influence of surface roughness on liquid drop impact
,”
J. Colloid Interface Sci.
203
,
16
30
(
1998
).
12.
I.
Roisman
,
A.
Lembach
, and
C.
Tropea
, “
Drop splashing induced by target roughness and porosity: The size plays no role
,”
Adv. Colloid Interface Sci.
222
,
615
621
(
2015
).
13.
C.
Josserand
,
L.
Lemoyne
,
R.
Troeger
, and
S.
Zaleski
, “
Droplet impact on a dry surface: Triggering the splash with a small obstacle
,”
J. Fluid Mech.
524
,
47
56
(
2005
).
14.
J. B.
Lee
,
N.
Laan
,
K. G.
de Bruin
,
G.
Skantzaris
,
N.
Shahidzadeh
,
D.
Derome
,
J.
Carmeliet
, and
D.
Bonn
, “
Universal rescaling of drop impact on smooth and rough surfaces
,”
J. Fluid Mech.
786
,
R4
(
2016
).
15.
E. S.
Gadelmawla
,
M. M.
Koura
,
T. M. A.
Maksoud
,
I. M.
Elewa
, and
H. H.
Soliman
, “
Roughness parameters
,”
J. Mater. Process. Technol.
123
,
133
145
(
2002
).
16.
E. Q.
Li
and
S. T.
Thoroddsen
, “
Time-resolved imaging of a compressible air disc under a drop impacting on a solid surface
,”
J. Fluid Mech.
780
,
636
648
(
2015
).
17.
A.
Latka
, “
Thin-sheet creation and threshold pressures in drop splashing
,”
Soft Matter
13
,
740
747
(
2017
).
18.
R. L.
Vander Wal
,
G. M.
Berger
, and
S. D.
Mozes
, “
The splash/non-splash boundary upon a dry surface and thin fluid film
,”
Exp. Fluids
40
,
53
(
2006
).
19.
J. C.
Bird
,
S.
Tsai
, and
H. A.
Stone
, “
Inclined to splash: Triggering and inhibiting a splash with tangential velocity
,”
New J. Phys.
11
,
063017
(
2009
).
20.
S. T.
Thoroddsen
,
M.-J.
Thoraval
,
K.
Takehara
, and
T. G.
Etoh
, “
Droplet splashing by a slingshot mechanism
,”
Phys. Rev. Lett.
106
,
034501
(
2011
).
21.
H.
Kim
,
U.
Park
,
C.
Lee
,
H.
Kim
,
M. H.
Kim
, and
J.
Kim
, “
Drop splashing on a rough surface: How surface morphology affects splashing threshold
,”
Appl. Phys. Lett.
104
,
161608
(
2014
).
22.
C. S.
Stevens
, “
Scaling of the splash threshold for low-viscosity fluids
,”
Europhys. Lett.
106
,
24001
(
2014
).
23.
L.
Xu
,
W. W.
Zhang
, and
S. R.
Nagel
, “
Drop splashing on a dry smooth surface
,”
Phys. Rev. Lett.
94
,
184505
(
2005
).
24.
L.
Xu
, “
Liquid drop splashing on smooth, rough, and textured surfaces
,”
Phys. Rev. E.
75
,
056316
(
2007
).
25.
Y.
Liu
,
P.
Tan
, and
L.
Xu
, “
Kelvin–Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
3280
3284
(
2015
).
26.
G.
Riboux
and
J. M.
Gordillo
, “
Experiments of drops impacting a smooth solid surface: A model of the critical impact speed for drop splashing
,”
Phys. Rev. Lett.
113
,
024507
(
2014
).
27.
Y.
Guo
,
Y.
Lian
, and
M.
Sussman
, “
Investigation of drop impact on dry and wet surfaces with consideration of surrounding air
,”
Phys. Fluids
28
,
073303
(
2016
).
28.
L.
Duchemin
and
C.
Josserand
, “
Rarefied gas correction for the bubble entrapment singularity in drop impacts
,”
C. R. Mec.
340
,
797
803
(
2012
).
29.
S.
Mandre
and
M. P.
Brenner
, “
The mechanism of a splash on a dry solid surface
,”
J. Fluid Mech.
690
,
148
172
(
2012
).
30.
J.
Palacios
,
J.
Hernandez
,
P.
Gomez
,
C.
Zanzi
, and
J.
Lopez
, “
Experimental study of splashing patterns and the splashing/deposition threshold in drop impacts onto dry smooth solid surfaces
,”
Exp. Therm. Fluid Sci.
44
,
571
582
(
2013
).
31.
G.
Riboux
and
J. M.
Gordillo
, “
The diameters and velocities of the droplets ejected after splashing
,”
J. Fluid Mech.
772
,
630
648
(
2015
).
32.
H. J. J.
Staat
,
T.
Tran
,
B.
Geerdink
,
G.
Riboux
,
C.
Sun
,
J. M.
Gordillo
, and
D.
Lohse
, “
Phase diagram for droplet impact on superheated surfaces
,”
J. Fluid Mech.
779
,
R3
(
2015
).
33.
G.
Riboux
and
J. M.
Gordillo
, “
Maximum drop radius and critical Weber number for splashing in the dynamical Leidenfrost regime
,”
J. Fluid Mech.
803
,
516
527
(
2016
).
34.
J.
Hao
and
S. I.
Green
, “
Splash threshold of a droplet impacting a moving substrate
,”
Phys. Fluids
29
,
012103
(
2017
).
35.
G.
Riboux
and
J. M.
Gordillo
, “
Boundary-layer effects in droplet splashing
,”
Phys. Rev. E.
96
,
013105
(
2017
).
36.
I. S.
Khattab
,
F.
Bandarkar
,
M. A. A.
Fakhree
, and
A.
Jouyban
, “
Density, viscosity, and surface tension of water + ethanol mixtures from 293 to 323 K
,”
Korean J. Chem. Eng.
29
(
6
),
812
817
(
2012
).
37.
G.
Fischer
,
M.
Bigerelle
,
K. J.
Kubiak
,
T. G.
Mathia
,
Z.
Khatir
, and
K.
Anselme
, “
Wetting of anisotropic sinusoidal surfaces—Experimental and numerical study of directional spreading
,”
Surf. Topogr.: Metrol. Prop.
2
,
044003
(
2014
).
38.
J. R.
Castrejon-Pita
,
K. J.
Kubiak
,
A. A.
Castrejon-Pita
,
M. C. T.
Wilson
, and
I. M.
Hutchings
, “
Mixing and internal dynamics of droplets impacting and coalescing on a solid surface
,”
Phys. Rev. E
88
,
023023
(
2013
).
39.
S. T.
Thoroddsen
,
K.
Takehara
, and
T. G.
Etoh
, “
Micro-splashing by drop impacts
,”
J. Fluid Mech.
706
,
560
570
(
2012
).
40.
J. H.
Snoeijer
and
B.
Andreotti
, “
Moving contact lines: Scales, regimes, and dynamical transitions
,”
Annu. Rev. Fluid Mech.
45
,
269
292
(
2013
).
You do not currently have access to this content.