We propose an efficient multidimensional implementation of VSIAM3 (volume/surface integrated average-based multi-moment method). Although VSIAM3 is a highly capable fluid solver based on a multi-moment concept and has been used for a wide variety of fluid problems, VSIAM3 could not simulate some simple benchmark problems well (for instance, lid-driven cavity flows) due to relatively high numerical viscosity. In this paper, we resolve the issue by using the efficient multidimensional approach. The proposed VSIAM3 is shown to capture lid-driven cavity flows of the Reynolds number up to Re = 7500 with a Cartesian grid of 128 × 128, which was not capable for the original VSIAM3. We also tested the proposed framework in free surface flow problems (droplet collision and separation of We = 40 and droplet splashing on a superhydrophobic substrate). The numerical results by the proposed VSIAM3 showed reasonable agreements with these experiments. The proposed VSIAM3 could capture droplet collision and separation of We = 40 with a low numerical resolution (8 meshes for the initial diameter of droplets). We also simulated free surface flows including particles toward non-Newtonian flow applications. These numerical results have showed that the proposed VSIAM3 can robustly simulate interactions among air, particles (solid), and liquid.

1.
Al-Mosallam
,
M.
and
Yokoi
,
K.
, “
Efficient implementation of volume/surface integrated average-based multi-moment method
,”
Int. J. Comput. Methods
14
(
02
),
1750010
(
2017
).
2.
Ashgriz
,
N.
and
Poo
,
J. Y.
, “
Coalescence and separation in binary collisions of liquid drops
,”
J. Fluid Mech.
221
,
183
204
(
1990
).
3.
Bell
,
J. B.
,
Colella
,
P.
, and
Glaz
,
H. M.
, “
A second-order projection method for the incompressible Navier-Stokes equations
,”
J. Comput. Phys.
85
(
2
),
257
283
(
1989
).
4.
Cundall
,
P. A.
and
Strack
,
O. D. L.
, “
A discrete numerical model for granular assemblies
,”
Géotechnique
29
(
1
),
47
65
(
1979
).
5.
Ghia
,
U.
,
Ghia
,
K.
, and
Shin
,
C.
, “
High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method
,”
J. Comput. Phys.
48
(
3
),
387
411
(
1982
).
6.
Harten
,
A.
,
Engquist
,
B.
,
Osher
,
S.
, and
Chakravarthy
,
S. R.
, “
Uniformly high order accurate essentially non-oscillatory schemes, III
,”
J. Comput. Phys.
71
(
2
),
231
303
(
1987
).
7.
Hirt
,
C.
and
Nichols
,
B.
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
(
1
),
201
225
(
1981
).
8.
Ii
,
S.
,
Sugiyama
,
K.
,
Takeuchi
,
S.
,
Takagi
,
S.
,
Matsumoto
,
Y.
, and
Xiao
,
F.
, “
An interface capturing method with a continuous function: The THINC method with multi-dimensional reconstruction
,”
J. Comput. Phys.
231
(
5
),
2328
2358
(
2012
).
9.
Jiang
,
G.-S.
and
Shu
,
C.-W.
, “
Efficient implementation of weighted ENO schemes
,”
J. Comput. Phys.
126
(
1
),
202
228
(
1996
).
10.
Li
,
J.
, “
Calcul d’interface affine par morceaux
,”
C. R. Assoc. Sci. Ser. II, Mec., Phys., Chim., Astron.
320
(
8
),
391
396
(
1995
).
11.
Li
,
Q.
,
Omar
,
S.
,
Deng
,
X.
, and
Yokoi
,
K.
, “
Constrained interpolation profile conservative semi-Lagrangian scheme based on third-order polynomial functions and essentially non-oscillatory (CIP-CSL3ENO) scheme
,”
Commun. Comput. Phys.
22
(
3
),
765
788
(
2017
).
12.
Liu
,
X.-D.
,
Osher
,
S.
, and
Chan
,
T.
, “
Weighted essentially non-oscillatory schemes
,”
J. Comput. Phys.
115
(
1
),
200
212
(
1994
).
13.
Nikolopoulos
,
N.
,
Theodorakakos
,
A.
, and
Bergeles
,
G.
, “
Off-centre binary collision of droplets: A numerical investigation
,”
Int. J. Heat Mass Transfer
52
(
19
),
4160
4174
(
2009
).
14.
Onodera
,
N.
,
Aoki
,
T.
, and
Yokoi
,
K.
, “
A fully conservative high-order upwind multi-moment method using moments in both upwind and downwind cells
,”
Int. J. Numer. Methods Fluids
82
(
8
),
493
511
(
2016
).
15.
Osher
,
S.
and
Sethian
,
J. A.
, “
Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations
,”
J. Comput. Phys.
79
(
1
),
12
49
(
1988
).
16.
Sakai
,
M.
, “
How should the discrete element method be applied in industrial systems?: A review
,”
KONA Powder Part. J.
33
,
169
178
(
2016
).
17.
Sakai
,
M.
,
Abe
,
M.
,
Shigeto
,
Y.
,
Mizutani
,
S.
,
Takahashi
,
H.
,
Viré
,
A.
,
Percival
,
J. R.
,
Xiang
,
J.
, and
Pain
,
C. C.
, “
Verification and validation of a coarse grain model of the DEM in a bubbling fluidized bed
,”
Chem. Eng. J.
244
,
33
43
(
2014
).
18.
Sussman
,
M.
and
Puckett
,
E. G.
, “
A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows
,”
J. Comput. Phys.
162
(
2
),
301
337
(
2000
).
19.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
, “
A level set approach for computing solutions to incompressible two-phase flow
,”
J. Comput. Phys.
114
(
1
),
146
159
(
1994
).
20.
Tanguy
,
S.
and
Berlemont
,
A.
, “
Application of a level set method for simulation of droplet collisions
,”
Int. J. Multiphase Flow
31
(
9
),
1015
1035
(
2005
).
21.
Tsai
,
P.
,
Pacheco
,
S.
,
Pirat
,
C.
,
Lefferts
,
L.
, and
Lohse
,
D.
, “
Drop impact upon micro- and nanostructured superhydrophobic surfaces
,”
Langmuir
25
(
20
),
12293
12298
(
2009
).
22.
Xiao
,
F.
, “
Unified formulation for compressible and incompressible flows by using multi-integrated moments I: One-dimensional inviscid compressible flow
,”
J. Comput. Phys.
195
(
2
),
629
654
(
2004
).
23.
Xiao
,
F.
and
Yabe
,
T.
, “
Completely conservative and oscillationless semi-Lagrangian schemes for advection transportation
,”
J. Comput. Phys.
170
(
2
),
498
522
(
2001
).
24.
Xiao
,
F.
,
Yabe
,
T.
,
Peng
,
X.
, and
Kobayashi
,
H.
, “
Conservative and oscillation-less atmospheric transport schemes based on rational functions
,”
J. Geophys. Res.: Atmos.
107
(
D22
),
ACL 2-1
ACL 2-11
, https://doi.org/10.1029/2001JD001532 (
2002
).
25.
Xiao
,
F.
,
Honma
,
Y.
, and
Kono
,
T.
, “
A simple algebraic interface capturing scheme using hyperbolic tangent function
,”
Int. J. Numer. Methods Fluids
48
(
9
),
1023
1040
(
2005
).
26.
Xiao
,
F.
,
Ikebata
,
A.
, and
Hasegawa
,
T.
, “
Numerical simulations of free-interface fluids by a multi-integrated moment method
,”
Comput. Struct.
83
(
6-7
),
409
423
(
2005
). Frontier of Multi-Phase Flow Analysis and Fluid-StructureFrontier of Multi-Phase Flow Analysis and Fluid-Structure.
27.
Xiao
,
F.
,
Akoh
,
R.
, and
Ii
,
S.
, “
Unified formulation for compressible and incompressible flows by using multi-integrated moments II: Multi-dimensional version for compressible and incompressible flows
,”
J. Comput. Phys.
213
(
1
),
31
56
(
2006
).
28.
Xiao
,
F.
,
Peng
,
X. D.
, and
Shen
,
X. S.
, “
A finite-volume grid using multimoments for geostrophic adjustment
,”
Mon. Weather Rev.
134
(
9
),
2515
2526
(
2006
).
29.
Yabe
,
T.
,
Tanaka
,
R.
,
Nakamura
,
T.
, and
Xiao
,
F.
, “
An exactly conservative semi-Lagrangian scheme (CIP-CSL) in one dimension
,”
Mon. Weather Rev.
129
(
2
),
332
344
(
2001
).
30.
Yamashita
,
S.
,
Chen
,
C.
,
Takahashi
,
K.
, and
Xiao
,
F.
, “
Large scale numerical simulations for multi-phase fluid dynamics with moving interfaces
,”
Int. J. Comput. Fluid Dyn.
22
(
6
),
405
410
(
2008
).
31.
Yokoi
,
K.
, “
Numerical method for complex moving boundary problems in a Cartesian fixed grid
,”
Phys. Rev. E
65
,
055701
(
2002
).
32.
Yokoi
,
K.
, “
Numerical method for interaction between multiparticle and complex structures
,”
Phys. Rev. E
72
,
046713
(
2005
).
33.
Yokoi
,
K.
, “
Efficient implementation of THINC scheme: A simple and practical smoothed VOF algorithm
,”
J. Comput. Phys.
226
(
2
),
1985
2002
(
2007
).
34.
Yokoi
,
K.
, “
A numerical method for free-surface flows and its application to droplet impact on a thin liquid layer
,”
J. Sci. Comput.
35
(
2
),
372
396
(
2008
).
35.
Yokoi
,
K.
, “
Numerical method for interaction among multi-particle, fluid and arbitrary shape structure
,”
J. Sci. Comput.
46
(
2
),
166
181
(
2011
).
36.
Yokoi
,
K.
, “
Numerical studies of droplet splashing on a dry surface: Triggering a splash with the dynamic contact angle
,”
Soft Matter
7
,
5120
5123
(
2011
).
37.
Yokoi
,
K.
, “
A practical numerical framework for free surface flows based on CLSVOF method, multi-moment methods and density-scaled CSF model: Numerical simulations of droplet splashing
,”
J. Comput. Phys.
232
(
1
),
252
271
(
2013
).
38.
Yokoi
,
K.
, “
A density-scaled continuum surface force model within a balanced force formulation
,”
J. Comput. Phys.
278
,
221
228
(
2014
).
39.
Yokoi
,
K.
,
Vadillo
,
D.
,
Hinch
,
J.
, and
Hutchings
,
I.
, “
Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface
,”
Phys. Fluids
21
(
7
),
072102
(
2009
).
40.
Yokoi
,
K.
,
Onishi
,
R.
,
Deng
,
X.-L.
, and
Sussman
,
M.
, “
Density-scaled balanced continuum surface force model with a level set based curvature interpolation technique
,”
Int. J. Comput. Methods
13
(
04
),
1641004
(
2016
).
41.
Zalesak
,
S. T.
, “
Fully multidimensional flux-corrected transport algorithms for fluids
,”
J. Comput. Phys.
31
(
3
),
335
362
(
1979
).
You do not currently have access to this content.