The thermocapillary motion of liquid droplets in fluid media depends on a variety of influential factors, including the not yet fully understood role played by the presence of the walls and other geometrical constraints. In order to address this specific question, in the present work, we rely on a rigorous mathematical and numerical framework (including an adaptive mesh strategy), which is key to perform physically consistent and computationally reliable simulations of such a problem given the different space scales it involves. Our final aim is the proper discernment of the triadic relationship established among viscous phenomena, thermal effects, and other specific behaviour due to the proximity of the droplet to a solid boundary. Different geometric configurations are considered (e.g., straight, converging, and diverging channels and droplets located near a single or adjacent walls), and distinct regimes are examined [including both (Ma, Re) → 0 and finite Ma flows]. The results show that for straight channels the droplet generally undergoes a decrease in the migration velocity due to its proximity to the wall. Such a departure becomes larger as the Marangoni number is increased. In addition, a velocity component directed perpendicularly to the wall emerges. This effect tends to “pull” the droplet away from the solid boundary if adiabatic conditions are considered, whereas for thermally conducting sidewalls and relatively large values of the Marangoni number, the distortion of the temperature field in the region between the droplet and the wall results in a net force with a component directed towards the surface. For non-straight channels, the dynamics depend essentially on the balance between two counteracting factors, namely, the effective distribution of temperature established in the channel (for which we provide analytic solutions in the limit as Re → 0) and the “blockage effect” due to the non-parallel configuration of the walls. The relative importance of these mechanisms is found to change according to the specific regime considered [creeping flow or Re = O(1)].

1.
M.
Lappa
,
Fluids, Materials and Microgravity: Numerical Techniques and Insights into the Physics
(
Elsevier Science
,
Oxford, England
,
2004
), p.
538
.
2.
M.
Lappa
, “
Assessment of VOF strategies for the analysis of Marangoni migration, collisional coagulation of droplets and thermal wake effects in metal alloys under microgravity conditions
,”
Comput. Mater. Continua
2
(
1
),
51
64
(
2005
).
3.
M.
Arienti
and
M.
Sussman
, “
A numerical study of the thermal transient in high-pressure diesel injection
,”
Int. J. Multiphase Flow
88
,
205
221
(
2017
).
4.
A.
Esmaeeli
and
G.
Tryggvason
, “
Direct numerical simulation of bubbly flows. Part I—Low Reynolds number arrays
,”
J. Fluid Mech.
377
,
313
345
(
1998
).
5.
A.
Esmaeeli
and
G.
Tryggvason
, “
Direct numerical simulation of bubbly flows. Part II—Moderate Reynolds number arrays
,”
J. Fluid Mech.
385
,
325
358
(
1999
).
6.
M.
Otha
and
M.
Sussman
, “
The buoyancy-driven motion of a single skirted bubble or drop rising through a viscous liquid
,”
Phys. Fluids
24
(
11
),
112101
(
2012
).
7.
F. J. N.
Direito
,
J. B. L. M.
Campos
, and
J. M.
Miranda
, “
Rising of a single Taylor drop in a stagnant liquid-2D laminar flow and axisymmetry limits
,”
Phys. Fluids
28
(
5
),
057101
(
2016
).
8.
R. G.
Sousa
,
A. M. F. R.
Pinto
, and
J. B. L. M.
Campos
, “
Interaction between Taylor bubbles rising in stagnant non-Newtonian fluids
,”
Int. J. Multiphase Flow
33
(
9
),
970
986
(
2007
).
9.
A.
Behjatian
and
A.
Esmaeeli
, “
Confinement effects on electrohydrodynamics of two-dimensional miscible liquid drops
,”
Colloids Surf., A
441
,
116
126
(
2014
).
10.
N.
Nguyen
,
K. M.
Ng
, and
X.
Huang
, “
Manipulation of ferrofluid droplet using planar coils
,”
Appl. Phys. Lett.
89
,
052509
(
2006
).
11.
P.
Brunet
,
M.
Baudoin
,
O.
Bou Matar
, and
F.
Zoueshtiagh
, “
Droplet displacement and oscillation induced by ultrasonic surface acoustic waves: A quantitative study
,”
Phys. Rev. E
81
,
036315
(
2010
).
12.
P. H.
Hadland
,
R.
Balasubramaniam
,
G.
Wozniak
, and
R. S.
Subramanian
, “
Thermocapillary migration of bubbles and drops at moderate to large Marangoni number and moderate Reynolds number in reduced gravity
,”
Exp. Fluids
26
,
240
248
(
1999
).
13.
A.
Esmaeeli
, “
Phase distribution of bubbly flows under terrestrial and microgravity conditions
,”
Fluid Dyn. Mater. Process.
1
(
1
),
63
80
(
2005
).
14.
M.
Lappa
,
C.
Piccolo
, and
L.
Carotenuto
, “
Mixed buoyant-Marangoni convection due to dissolution of a droplet in a liquid-liquid system with miscibility gap
,”
Eur. J. Mech.-B Fluids
23
(
5
),
781
794
(
2004
).
15.
M.
Lappa
and
C.
Piccolo
, “
Higher modes of mixed buoyant-Marangoni unstable convection originated from a droplet dissolving in a liquid/liquid system with miscibility gap
,”
Phys. Fluids
16
(
12
),
4262
4272
(
2004
).
16.
M.
Lappa
, “
Oscillatory convective structures and solutal jets originated from discrete distributions of droplets in organic alloys with a miscibility gap
,”
Phys. Fluids
18
(
4
),
042105
(
2006
).
17.
P. S.
Grant
,
B.
Cantor
,
S.
Rogers
, and
L.
Katgerman
, “
A computer model for trajectories and thermal profiles of atomised droplets in spray forming
,”
Cast Met.
3
(
4
),
227
232
(
1990
).
18.
N. O.
Young
,
J. S.
Goldstein
, and
M. J.
Block
, “
The motion of bubbles in a vertical temperature gradient
,”
J. Fluid Mech.
6
,
350
360
(
1959
).
19.
R. S.
Subramanian
, “
Thermocapillary migration of bubbles and droplets
,”
Adv. Space Res.
3
(
5
),
145
153
(
1983
).
20.
R.
Balasubramaniam
and
A.-T.
Chai
, “
Thermocapillary migration of droplets: An exact solution for small Marangoni numbers
,”
J. Colloid Interface Sci.
119
(
2
),
531
538
(
1987
).
21.
H.
Haj-Hariri
,
A.
Nadim
, and
A.
Borhan
, “
Effect of inertia on the thermocapillary velocity of a drop
,”
J. Colloid Interface Sci.
140
(
1
),
277
286
(
1990
).
22.
A.
Nadim
,
H.
Haj-Hariri
, and
A.
Borhan
, “
Thermocapillary migration of slightly deformed droplets
,”
Part. Sci. Technol.
8
(
3-4
),
191
198
(
1990
).
23.
R.
Balasubramaniam
and
R. S.
Subramanian
, “
The migration of a drop in a uniform temperature gradient at large Marangoni numbers
,”
Phys. Fluids
12
(
4
),
733
743
(
2000
).
24.
J. F.
Harper
and
D. W.
Moore
, “
The motion of a spherical liquid drop at high Reynolds number
,”
J. Fluid Mech.
32
(
2
),
367
391
(
1968
).
25.
H.
Haj-Hariri
,
Q.
Shi
, and
A.
Borhan
, “
Thermocapillary motion of defor-mable drops at finite Reynolds and Marangoni numbers
,”
Phys. Fluids
9
(
4
),
845
855
(
1997
).
26.
M.
Rudman
, “
Volume tracking methods for interfacial flow calculations
,”
Int. J. Numer. Methods Fluids
24
,
671
691
(
1998
).
27.
D.
Gueyffier
,
J.
Li
,
A.
Nadim
,
S.
Scardovelli
, and
S.
Zaleski
, “
Volume of fluid interface tracking with smoothed surface stress methods for three-dimensional flows
,”
J. Comput. Phys.
152
,
423
456
(
1999
).
28.
M.
Sussman
and
E.
Fatemi
, “
An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow
,”
SIAM J. Sci. Comput.
20
,
1165
1191
(
1999
).
29.
M.
Sussman
and
E.
Puckett
, “
A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows
,”
J. Comput. Phys.
162
,
301
337
(
2000
).
30.
G.
Tryggvason
,
B.
Bunner
,
A.
Esmaeeli
,
D.
Juric
,
N.
Al-Rawahi
,
W.
Tauber
,
J.
Han
,
S.
Nas
, and
Y.-J.
Jan
, “
A front tracking method for the computations of multiphase flow
,”
J. Comput. Phys.
169
,
708
759
(
2001
).
31.
Z.
Yin
,
P.
Gao
,
W.
Hu
, and
L.
Chang
, “
Thermocapillary migration of nondeformable drops
,”
Phys. Fluid
20
,
082101
(
2008
).
32.
Z.
Yin
,
L.
Chang
,
W.
Hu
,
Q.
Li
, and
H.
Wang
, “
Numerical simulations on thermocapillary migrations of nondeformable droplets with large Marangoni numbers
,”
Phys. Fluids
24
,
092101
(
2012
).
33.
J.
Zhao
,
L.
Zhang
,
Z.
Li
, and
W.
Qin
, “
Topological structure evolvement of flow and temperature fields in deformable drop Marangoni migration in microgravity
,”
Int. J. Heat Mass Transfer
54
,
4655
4663
(
2011
).
34.
P. T.
Brady
,
M.
Hermann
, and
J. M.
Lopez
, “
Confined thermocapillary motion of a three-dimensional deformable drop
,”
Phys. Fluids
23
,
022101
(
2011
).
35.
N.
Balcázar
,
J.
Rigola
,
J.
Castro
, and
A.
Oliva
, “
A level-set model for thermocapillary motion of deformable fluid particles
,”
Int. J. Heat Fluid Flow
62
,
324
343
(
2016
).
36.
H.
Liu
,
L.
Wu
,
Y.
Ba
, and
G.
Xi
, “
A lattice Boltzmann method for axisymmetric thermocapillary flows
,”
Int. J. Heat Mass Transfer
104
,
337
350
(
2017
).
37.
H.
Liu
and
Y.
Zhang
, “
Modelling thermocapillary migration of a microfluidic droplet on a solid surface
,”
J. Comput. Phys.
280
,
37
53
(
2015
).
38.
Z.
Guo
and
P.
Lin
, “
A thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects
,”
J. Fluid Mech.
766
,
226
271
(
2015
).
39.
H.
Liu
,
A. J.
Valocchi
,
Y.
Zhang
, and
Q.
Kang
, “
Phase-field based lattice Boltzmann finite difference model for simulating thermocapillary flows
,”
Phys. Rev. E
87
,
013010
(
2013
).
40.
H.
Liu
,
Y.
Zhang
, and
A. J.
Valocchi
, “
Modelling and simulation of thermocapillary flows using lattice Boltzmann method
,”
J. Comput. Phys.
231
,
4433
4453
(
2012
).
41.
H.
Liu
,
A. J.
Valocchi
,
Y.
Zhang
, and
Q.
Kang
, “
Lattice Boltzmann phase-field modeling of thermocapillary flows in a confined microchannel
,”
J. Comput. Phys.
256
,
334
356
(
2014
).
42.
M.
Meyyappan
,
W. R.
Wilcox
, and
R. S.
Subramanian
, “
Thermocapillary migration of a bubble normal to a plane surface
,”
J. Colloid Interface Sci.
83
(
1
),
199
208
(
1981
).
43.
G.
Wozniak
, “
On the thermocapillary motion of droplets under reduced gravity
,”
J. Colloid Interface Sci.
141
(
1
),
245
254
(
1991
).
44.
R.
Balasubramaniam
,
C. E.
Lacy
,
G.
Wozniak
, and
R. S.
Subramanian
, “
Thermocapillary migration of bubbles and drops at moderate values of the Marangoni number in reduced gravity
,”
Phys. Fluids
8
(
4
),
872
880
(
1996
).
45.
G.
Tryggvason
,
R.
Scardovelli
, and
S.
Zaleski
,
Direct Numerical Simulations of Gas-Liquid Multiphase Flows
(
Cambridge University Press
,
2011
).
46.
M.
Lappa
, “
Coalescence and non-coalescence phenomena in multi-material problems and dispersed multiphase flows: Part 2: A critical review of CFD approaches
,”
Fluid Dyn. Mater. Process.
1
(
3
),
213
234
(
2005
).
47.
R.
Balasubramaniam
and
R. S.
Subramanian
,
The Motion of Bubbles and Drops in Reduced Gravity
(
Cambridge University Press
,
2001
).
48.
A.
Albadawi
,
D. B.
Donoghue
,
A. J.
Robinson
,
D. B.
Murray
, and
Y. M. C.
Delauré
, “
Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment
,”
Int. J. Multiphase Flows
53
,
11
28
(
2013
).
49.
T.
Yamamoto
,
Y.
Okano
, and
S.
Dost
, “
Validation of the S-CLSVOF method with the density-scaled balanced continuum surface force model in multiphase systems coupled with thermocapillary flows
,”
Int. J. Numer. Methods Fluids
83
(
3
),
223
244
(
2016
).
50.
van H. N. P.
Berberović
,
S.
Jarkirlić
,
L. V.
Roisman
, and
C.
Tropea
, “
Drop impact onto a liquid layer of finite thickness: Dynamics of the cavity evolution
,”
Phys. Rev. E
79
,
036306
(
2009
).
51.
P.
Capobianchi
,
M.
Lappa
, and
M. S. N.
Oliveira
, “
Implementation of a flexible and modular multiphase framework for the analysis of surface-tension driven flows based on a L-S VOF approach
,” in
Selected papers of the 11th OpenFOAM Workshop
, edited by
J. M.
Nóbrega
and
H.
Jasak
(
Springer Nature
,
2018
).
52.
D. S.
Jang
,
R.
Jetli
, and
S.
Acharya
, “
Comparison of the PISO, SIMPLER and SIMPLEC algorithms for the treatment of the pressure-velocity coupling in steady flow problems
,”
Numer. Heat Transfer
10
,
209
228
(
1986
).
53.
F.
Moukalled
,
L.
Mangani
, and
M.
Darwish
,
The Finite Volume Method in Computational Fluid Dynamics—An Advanced Introduction with OpenFOAM and Matlab
(
Springer International Publishing
,
New York
,
2016
).
54.
S. K.
Choi
,
H. Y.
Nam
, and
M.
Cho
, “
Systematic comparison of finite-volume calculation methods with staggered and nonstaggered grid arrangements
,”
Numer. Heat Transfer, Part B
25
(
2
),
205
221
(
1994
).
55.
S. K.
Choi
,
H. Y.
Nam
, and
M.
Cho
, “
Use of staggered and nonstaggered grid arrangements for incompressible flow calculations on nonorthogonal grids
,”
Numer. Heat Transfer, Part B
25
(
2
),
193
204
(
1994
).
56.
M. C.
Rhie
and
L. W.
Chow
, “
A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation
,” AIAA-82-0998,
1982
.
57.
S. V.
Patankar
and
D. B.
Spalding
, “
A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows
,”
Int. J. Heat Mass Transfer
15
,
1787
1806
(
1972
).
58.
J. P.
Van Doormaal
and
G. D.
Raithby
, “
An evaluation of the segregated approach for predicting incompressible fluid flows
,” in
National Heat Transfer Conference
,
Denver, Colorado
,
August 4-7 1985
.
59.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
(
2
),
335
354
(
1992
).
60.
P.
Coelho
,
J. C. F.
Pereira
, and
M. G.
Carvalho
, “
Calculation of laminar recirculating flows using a local non-staggered grid refinement system
,”
Int. J. Numer. Methods Fluids
12
(
6
),
535
557
(
1991
).
61.
R.
Vilsmeier
and
D.
HÄanel
, “
Adaptive methods on unstructured grids for Euler and Navier-Stokes equations
,”
Comput. Fluids
22
(
4-5
),
485
499
(
1993
).
62.
D.
Fuster
,
A.
Bagué
,
T.
Boeck
,
L.
Le Moyne
,
A.
Leboissetier
,
S.
Popinet
,
P.
Ray
,
R.
Scardovelli
, and
S.
Zaleski
, “
Simulation of primary atomization with an octree adaptive mesh refinement and VOF method
,”
Int. J. Multiphase Flow
35
,
550
565
(
2009
).
63.
C.
Galusinski
and
P.
Vigneaux
, “
On stability condition for bifluid flows with surface tension: Application to microfluidics
,”
J. Comput. Phys.
227
,
6140
6164
(
2008
).
64.
S. S.
Deshpande
,
L.
Anumolu
, and
M.
Trujillo
, “
Evaluating the performance of the two-phase flow solver interFoam
,”
Comput. Sci. Discovery
5
,
014016
(
2012
).
65.
X. J.
Ma
,
R.
Balasubramanian
, and
R. S.
Subramanian
, “
Numerical simulation of thermocapillary drop motion with internal circulation
,”
Numer. Heat Transfer, Part A
35
,
291
239
(
1999
).
You do not currently have access to this content.