Elastic channels are an important component of many soft matter systems, in which hydrodynamic interactions with confining membranes determine the behavior of particles in flow. In this work, we derive analytical expressions for Green’s functions associated with a point-force (Stokeslet) directed parallel or perpendicular to the axis of an elastic cylindrical channel exhibiting resistance against shear and bending. We then compute the leading order self- and pair mobility functions of particles on the cylinder axis, finding that the mobilities are primarily determined by membrane shear and that bending does not play a significant role. In the quasi-steady limit of vanishing frequency, the particle self- and pair mobilities near a no-slip hard cylinder are recovered only if the membrane possesses a non-vanishing shear rigidity. We further compute the membrane deformation, finding that deformation is generally more pronounced in the axial (radial) directions, for the motion along (perpendicular to) the cylinder centerline, respectively. Our analytical calculations for Green’s functions in an elastic cylinder can serve as a fundamental building block for future studies and are verified by fully resolved boundary integral simulations where very good agreement is obtained.

1.
J. F.
Brady
and
G.
Bossis
, “
Stokesian dynamics
,”
Annu. Rev. Fluid Mech.
20
,
111
157
(
1988
).
2.
J.
Bleibel
,
A.
Domínguez
,
F.
Günther
,
J.
Harting
, and
M.
Oettel
, “
Hydrodynamic interactions induce anomalous diffusion under partial confinement
,”
Soft Matter
10
,
2945
2948
(
2014
).
3.
Q.-H.
Wei
,
C.
Bechinger
, and
P.
Leiderer
, “
Single-file diffusion of colloids in one-dimensional channels
,”
Science
287
,
625
627
(
2000
).
4.
C.
Lutz
,
M.
Kollmann
, and
C.
Bechinger
, “
Single-file diffusion of colloids in one-dimensional channels
,”
Phys. Rev. Lett.
93
,
026001
(
2004
).
5.
P. J. A.
Janssen
,
M. D.
Baron
,
P. D.
Anderson
,
J.
Blawzdziewicz
,
M.
Loewenberg
, and
E.
Wajnryb
, “
Collective dynamics of confined rigid spheres and deformable drops
,”
Soft Matter
8
,
7495
7513
(
2012
).
6.
P. P.
Lele
,
J. W.
Swan
,
J. F.
Brady
,
N. J.
Wagner
, and
E. M.
Furst
, “
Colloidal diffusion and hydrodynamic screening near boundaries
,”
Soft Matter
7
,
6844
6852
(
2011
).
7.
M.
Gross
,
T.
Krüger
, and
F.
Varnik
, “
Rheology of dense suspensions of elastic capsules: Normal stresses, yield stress, jamming and confinement effects
,”
Soft Matter
10
,
4360
4372
(
2014
).
8.
Deformation and Flow in Biological Systems
, edited by
A.
Frey-Wyssling
(
North-Holland Publishing, Co.
,
Amsterdam
,
1952
).
9.
R.
Shadwick
, “
Mechanical design in arteries
,”
J. Exp. Biol.
202
,
3305
3313
(
1999
).
10.
C. G.
Caro
,
T. J.
Pedley
,
R. C.
Schroter
, and
W. A.
Seed
,
The Mechanics of the Circulation
, 2nd ed. (
Cambridge University Press
,
2011
).
11.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
, “
Engineering flows in small devices: Microfluidics toward a lab-on-a-chip
,”
Annu. Rev. Fluid Mech.
36
,
381
411
(
2004
).
12.
D. P.
Holmes
,
B.
Tavakol
,
G.
Froehlicher
, and
H. A.
Stone
, “
Control and manipulation of microfluidic flow via elastic deformations
,”
Soft Matter
9
,
7049
7053
(
2013
).
13.
B.
Tavakol
,
M.
Bozlar
,
C.
Punckt
,
G.
Froehlicher
,
H. A.
Stone
,
I. A.
Aksay
, and
D. P.
Holmes
, “
Buckling of dielectric elastomeric plates for soft, electrically active microfluidic pumps
,”
Soft Matter
10
,
4789
4794
(
2014
).
14.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
(
Springer Science & Business Media
,
2012
), Vol. 1.
15.
H.
Faxén
, “
About T. Bohlin’s paper: On the drag on rigid spheres, moving in a viscous liquid inside cylindrical tubes
,”
Kolloid-Z.
167
,
146
(
1959
).
16.
H.
Faxén
, “
Der widerstand gegen die bewegung einer starren kugel in einer zähen flüssigkeit, die zwischen zwei parallelen ebenen wänden eingeschlossen ist
,”
Ann. Phys.
373
,
89
119
(
1922
).
17.
S.
Wakiya
, “
A spherical obstacle in the flow of a viscous fluid through a tube
,”
J. Phys. Soc. Jpn.
8
,
254
256
(
1953
).
18.
T.
Bohlin
,
On the Drag on a Rigid Sphere Moving in a Viscous Liquid inside a Cylindrical Tube
(
Transactions of the Royal Institute of Technology
,
Stockholm
,
1960
), Vol. 155, p.
64
.
19.
W. B.
Zimmerman
, “
On the resistance of a spherical particle settling in a tube of viscous fluid
,”
Int. J. Eng. Sci.
42
,
1753
1778
(
2004
).
20.
S.
Leichtberg
,
R.
Pfeffer
, and
S.
Weinbaum
, “
Stokes flow past finite coaxial clusters of spheres in a circular cylinder
,”
Int. J. Multiphase Flow
3
,
147
(
1976
).
21.
M.
Kedzierski
and
E.
Wajnryb
, “
Precise multipole method for calculating many-body hydrodynamic interactions in a microchannel
,”
J. Chem. Phys.
133
,
154105
(
2010
).
22.
B.
Cui
,
H.
Diamant
, and
B.
Lin
, “
Screened hydrodynamic interaction in a narrow channel
,”
Phys. Rev. Lett.
89
,
188302
(
2002
).
23.
B.
Cui
,
B.
Lin
,
S.
Sharma
, and
S. A.
Rice
, “
Equilibrium structure and effective pair interaction in a quasi-one-dimensional colloid liquid
,”
J. Chem. Phys.
116
,
3119
3127
(
2002
).
24.
K.
Misiunas
,
S.
Pagliara
,
E.
Lauga
,
J. R.
Lister
, and
U. F.
Keyser
, “
Nondecaying hydrodynamic interactions along narrow channels
,”
Phys. Rev. Lett.
115
,
038301
(
2015
).
25.
H. Y.
Yeh
and
H. J.
Keh
, “
Axisymmetric creeping motion of a prolate particle in a cylindrical pore
,”
Eur. J. Mech., B: Fluids
39
,
52
58
(
2013
).
26.
J.
Happel
and
B. J.
Bryne
, “
Viscous flow in multiparticle systems. Motion of a sphere in a cylindrical tube
,”
Ind. Eng. Chem.
46
,
1181
1186
(
1954
).
27.
H.
Brenner
and
J.
Happel
, “
Slow viscous flow past a sphere in a cylindrical tube
,”
J. Fluid Mech.
4
,
195
213
(
1958
).
28.
T.
Greenstein
and
J.
Happel
, “
Theoretical study of the slow motion of a sphere and a fluid in a cylindrical tube
,”
J. Fluid Mech.
34
,
705
710
(
1968
).
29.
P. M.
Bungay
and
H.
Brenner
, “
The motion of a closely-fitting sphere in a fluid-filled tube
,”
Int. J. Multiphase Flow
1
,
25
56
(
1973
).
30.
N.
Liron
and
R.
Shahar
, “
Stokes flow due to a Stokeslet in a pipe
,”
J. Fluid Mech.
86
,
727
744
(
1978
).
31.
T.
Greenstein
and
J.
Happel
, “
The slow motion of two particles symmetrically placed about the axis of a circular cylinder in a direction perpendicular to their line of centers
,”
Appl. Sci. Res.
22
,
345
359
(
1970
).
32.
N.
Lecoq
,
F.
Feuillebois
,
N.
Anthore
,
R.
Anthore
,
F.
Bostel
, and
C.
Petipas
, “
Precise measurement of particle–wall hydrodynamic interactions at low Reynolds number using laser interferometry
,”
Phys. Fluids A
5
,
3
12
(
1993
).
33.
J. J. L.
Higdon
and
G. P.
Muldowney
, “
Resistance functions for spherical particles, droplets and bubbles in cylindrical tubes
,”
J. Fluid Mech.
298
,
193
210
(
1995
).
34.
C.
Pozrikidis
, “
Computation of stokes flow due to the motion or presence of a particle in a tube
,”
J. Eng. Math.
53
,
1
20
(
2005
).
35.
H. J.
Keh
and
Y. C.
Chang
, “
Creeping motion of a slip spherical particle in a circular cylindrical pore
,”
Int. J. Multiphase Flow
33
,
726
741
(
2007
).
36.
S.
Bhattacharya
,
C.
Mishra
, and
S.
Bhattacharya
, “
Analysis of general creeping motion of a sphere inside a cylinder
,”
J. Fluid Mech.
642
,
295
(
2010
).
37.
A.
Imperio
,
J. T.
Padding
, and
W. J.
Briels
, “
Diffusion of spherical particles in microcavities
,”
J. Chem. Phys.
134
,
154904
(
2011
).
38.
S.
Navardi
,
S.
Bhattacharya
, and
H.
Wu
, “
Stokesian simulation of two unequal spheres in a pressure-driven creeping flow through a cylinder
,”
Comput. Fluids
121
,
145
(
2015
).
39.
H.
Hasimoto
, “
Slow motion of a small sphere in a cylindrical domain
,”
J. Phys. Soc. Jpn.
41
,
2143
2144
(
1976
).
40.
O.
Sano
, “
Mobility of a small sphere in a viscous fluid confined in a rigid circular cylinder of finite length
,”
J. Phys. Soc. Jpn.
56
,
2713
2720
(
1987
).
41.
G. J.
Sheard
and
K.
Ryan
, “
Pressure-driven flow past spheres moving in a circular tube
,”
J. Fluid Mech.
592
,
233
262
(
2007
).
42.
B. U.
Felderhof
, “
Transient flow of a viscous incompressible fluid in a circular tube after a sudden point impulse
,”
J. Fluid Mech.
637
,
285
303
(
2009
).
43.
B. U.
Felderhof
, “
Transient flow of a viscous compressible fluid in a circular tube after a sudden point impulse
,”
J. Fluid Mech.
644
,
97
106
(
2010
).
44.
B. U.
Felderhof
, “
Transient flow of a viscous compressible fluid in a circular tube after a sudden point impulse transverse to the axis
,”
J. Fluid Mech.
649
,
329
340
(
2010
).
45.
B. U.
Felderhof
and
G.
Ooms
, “
Flow of a viscous compressible fluid produced in a circular tube by an impulsive point source
,”
J. Fluid Mech.
668
,
100
112
(
2011
).
46.
S.
Rubinow
and
J. B.
Keller
, “
Flow of a viscous fluid through an elastic tube with applications to blood flow
,”
J. Theor. Biol.
35
,
299
313
(
1972
).
47.
Y.-C.
Fung
,
Biomechanics: Circulation
(
Springer Science & Business Media
,
2013
).
48.
C. D.
Bertram
,
C. J.
Raymond
, and
K. S. A.
Butcher
, “
Oscillations in a collapsed-tube analog of the brachial artery under a sphygmomanometer cuff
,”
J. Biomech. Eng.
111
,
185
191
(
1989
).
49.
J. B.
Grotberg
, “
Respiratory fluid mechanics and transport processes
,”
Annu. Rev. Biomed. Eng.
3
,
421
457
(
2001
).
50.
J. B.
Grotberg
and
O. E.
Jensen
, “
Biofluid mechanics in flexible tubes
,”
Annu. Rev. Fluid Mech.
36
,
121
(
2004
).
51.
S.
Canic
,
J.
Tambaca
,
G.
Guidoboni
,
A.
Mikelic
,
C. J.
Hartley
, and
D.
Rosenstrauch
, “
Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow
,”
SIAM J. Appl. Math.
67
,
164
193
(
2006
).
52.
D.
Takagi
and
N. J.
Balmforth
, “
Peristaltic pumping of viscous fluid in an elastic tube
,”
J. Fluid Mech.
672
,
196
218
(
2011
).
53.
A.
Heap
and
A.
Juel
, “
Anomalous bubble propagation in elastic tubes
,”
Phys. Fluids
20
,
081702
(
2008
).
54.
A.
Heap
and
A.
Juel
, “
Bubble transitions in strongly collapsed elastic tubes
,”
J. Fluid Mech.
633
,
485
507
(
2009
).
55.
R.
Zheng
,
N.
Phan-Thien
, and
R. I.
Tanner
, “
The flow past a sphere in a cylindrical tube: Effects of intertia, shear-thinning and elasticity
,”
Rheol. Acta
30
,
499
510
(
1991
).
56.
S.
Nahar
,
S. A. K.
Jeelani
, and
E. J.
Windhab
, “
Influence of elastic tube deformation on flow behavior of a shear thinning fluid
,”
Chem. Eng. Sci.
75
,
445
455
(
2012
).
57.
S.
Nahar
,
S. A. K.
Jeelani
, and
E. J.
Windhab
, “
Prediction of velocity profiles of shear thinning fluids flowing in elastic tubes
,”
Chem. Eng. Commun.
200
,
820
835
(
2013
).
58.
A.
Mikelic
,
G.
Guidoboni
, and
S.
Canic
, “
Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: The stationary stokes problem
,”
Networks Heterog. Media
2
,
397
(
2007
).
59.
A.
Marzo
,
X. Y.
Luo
, and
C. D.
Bertram
, “
Three-dimensional collapse and steady flow in thick-walled flexible tubes
,”
J. Fluid Struct.
20
,
817
835
(
2005
).
60.
H.
Alexander
, “
The tensile instability of an inflated cylindrical membrane as affected by an axial load
,”
Int. J. Mech. Sci.
13
,
87
94
(
1971
).
61.
Y.
Shan
,
M. P.
Philen
,
C. E.
Bakis
,
K.-W.
Wang
, and
C. D.
Rahn
, “
Nonlinear-elastic finite axisymmetric deformation of flexible matrix composite membranes under internal pressure and axial force
,”
Compos. Sci. Technol.
66
,
3053
3063
(
2006
).
62.
M.
Rahimi
,
A.
DeSimone
, and
M.
Arroyo
, “
Curved fluid membranes behave laterally as effective viscoelastic media
,”
Soft Matter
9
,
11033
11045
(
2013
).
63.
M.
Rahimi
, “
Shape dynamics and lipid hydrodynamics of bilayer membranes: Modeling, simulation and experiments
,” Ph.D. thesis,
Polytechnic University of Catalonia, Spain
,
2013
.
64.
M. J.
Lighthill
, “
Pressure-forcing of tightly fitting pellets along fluid-filled elastic tubes
,”
J. Fluid Mech.
34
,
113
143
(
1968
).
65.
A.
Tözeren
,
N.
Özkaya
, and
H.
Tözeren
, “
Flow of particles along a deformable tube
,”
J. Biomech.
15
,
517
527
(
1982
).
66.
A.
Daddi-Moussa-Ider
,
M.
Lisicki
, and
S.
Gekle
, “
Slow rotation of a spherical particle inside an elastic tube
,”
Acta Mech.
(published online, 2017).
67.
L. G.
Leal
, “
Particle motions in a viscous fluid
,”
Annu. Rev. Fluid Mech.
12
,
435
476
(
1980
).
68.
J.
Tan
,
A.
Thomas
, and
Y.
Liu
, “
Influence of red blood cells on nanoparticle targeted delivery in microcirculation
,”
Soft Matter
8
,
1934
1946
(
2012
).
69.
A.
Daddi-Moussa-Ider
,
A.
Guckenberger
, and
S.
Gekle
, “
Long-lived anomalous thermal diffusion induced by elastic cell membranes on nearby particles
,”
Phys. Rev. E
93
,
012612
(
2016
).
70.
A.
Daddi-Moussa-Ider
,
A.
Guckenberger
, and
S.
Gekle
, “
Particle mobility between two planar elastic membranes: Brownian motion and membrane deformation
,”
Phys. Fluids
28
,
071903
(
2016
).
71.
A.
Daddi-Moussa-Ider
and
S.
Gekle
, “
Hydrodynamic interaction between particles near elastic interfaces
,”
J. Chem. Phys.
145
,
014905
(
2016
).
72.
S.
Ramanujan
and
C.
Pozrikidis
, “
Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: Large deformations and the effect of fluid viscosities
,”
J. Fluid Mech.
361
,
117
143
(
1998
).
73.
E.
Lac
,
D.
Barthès-Biesel
,
N. A.
Pelekasis
, and
J.
Tsamopoulos
, “
Spherical capsules in three-dimensional unbounded stokes flows: Effect of the membrane constitutive law and onset of buckling
,”
J. Fluid Mech.
516
,
303
334
(
2004
).
74.
J. B.
Freund
, “
Numerical simulation of flowing blood cells
,”
Annu. Rev. Fluid Mech.
46
,
67
95
(
2014
).
75.
D.
Barthès-Biesel
, “
Motion and deformation of elastic capsules and vesicles in flow
,”
Annu. Rev. Fluid Mech.
48
,
25
52
(
2016
).
76.
W.
Helfrich
, “
Elastic properties of lipid bilayers: Theory and possible experiments
,”
Z. Naturforsch. C
28
,
693
(
1973
).
77.
A.
Guckenberger
and
S.
Gekle
, “
Theory and algorithms to compute Helfrich bending forces: A review
,”
J. Phys.: Condens. Matter
29
,
203001
(
2017
).
78.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Courier Corporation
,
2013
).
79.
T.
Bickel
, “
Brownian motion near a liquid-like membrane
,”
Eur. Phys. J. E
20
,
379
385
(
2006
).
80.
S. J.
Weekley
,
S. L.
Waters
, and
O. E.
Jensen
, “
Transient elastohydrodynamic drag on a particle moving near a deformable wall
,”
Q. J. Mech. Appl. Math.
59
,
277
300
(
2006
).
81.
T.
Salez
and
L.
Mahadevan
, “
Elastohydrodynamics of a sliding, spinning and sedimenting cylinder near a soft wall
,”
J. Fluid Mech.
779
,
181
196
(
2015
).
82.
B.
Saintyves
,
T.
Jules
,
T.
Salez
, and
L.
Mahadevan
, “
Self-sustained lift and low friction via soft lubrication
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
5847
5849
(
2016
).
83.
B.
Rallabandi
,
B.
Saintyves
,
T.
Jules
,
T.
Salez
,
C.
Schönecker
,
L.
Mahadevan
, and
H. A.
Stone
, “
Rotation of an immersed cylinder sliding near a thin elastic coating
,”
Phys. Rev. Fluids
2
,
074102
(
2017
).
84.
Y. O.
Fuentes
,
S.
Kim
, and
D. J.
Jeffrey
, “
Mobility functions for two unequal viscous drops in Stokes flow. I. Axisymmetric motions
,”
Phys. Fluids
31
,
2445
2455
(
1988
).
85.
Y. O.
Fuentes
,
S.
Kim
, and
D. J.
Jeffrey
, “
Mobility functions for two unequal viscous drops in Stokes flow. II. Asymmetric motions
,”
Phys. Fluids A
1
,
61
76
(
1989
).
86.
G. N.
Watson
,
A Treatise on the Theory of Bessel Functions
(
Cambridge University Press
,
1995
).
87.
M.
Abramowitz
,
I. A.
Stegun
 et al,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1972
), Vol. 1.
88.
A.
Daddi-Moussa-Ider
and
S.
Gekle
, “
Hydrodynamic mobility of a solid particle near a spherical elastic membrane: Axisymmetric motion
,”
Phys. Rev. E
95
,
013108
(
2017
).
89.
A.
Daddi-Moussa-Ider
,
M.
Lisicki
, and
S.
Gekle
, “
Hydrodynamic mobility of a solid particle near a spherical elastic membrane. II. Asymmetric motion
,”
Phys. Rev. E
95
,
053117
(
2017
).
90.
S.
Kim
and
R. T.
Mifflin
, “
The resistance and mobility functions of two equal spheres in low Reynolds number flow
,”
Phys. Fluids
28
,
2033
(
1984
).
91.
E. R.
Dufresne
,
T. M.
Squires
,
M. P.
Brenner
, and
D. G.
Grier
, “
Hydrodynamic coupling of two Brownian spheres to a planar surface
,”
Phys. Rev. Lett.
85
,
3317
(
2000
).
92.
J. W.
Swan
and
J. F.
Brady
, “
Simulation of hydrodynamically interacting particles near a no-slip boundary
,”
Phys. Fluids
19
,
113306
(
2007
).
93.
B.
Tränkle
,
D.
Ruh
, and
A.
Rohrbach
, “
Interaction dynamics of two diffusing particles: Contact times and influence of nearby surfaces
,”
Soft Matter
12
,
2729
2736
(
2016
).
94.
J. R.
Blake
, “
On the generation of viscous toroidal eddies in a cylinder
,”
J. Fluid Mech.
95
,
209
222
(
1979
).
95.
R.
Bracewell
,
The Fourier Transform and Its Applications
(
McGraw-Hill
,
1999
).
96.
T.
Hahn
, “
Cuba—A library for multidimensional numerical integration
,”
Comput. Phys. Commun.
168
,
78
95
(
2005
).
97.
T.
Hahn
, “
Concurrent Cuba
,”
Comput. Phys. Commun.
207
,
341
349
(
2016
).
98.
T.
Bickel
, “
Hindered mobility of a particle near a soft interface
,”
Phys. Rev. E
75
,
041403
(
2007
).
99.
N.
Phan-Thien
and
D.
Tullock
, “
Completed double layer boundary element method in elasticity
,”
J. Mech. Phys. Solids
41
,
1067
1086
(
1993
).
100.
M.
Kohr
and
I. I.
Pop
,
Viscous Incompressible Flow for Low Reynolds Numbers
(
WIT Press/Computational Mechanics
,
2004
), Vol. 16.
101.
H.
Zhao
and
E. S. G.
Shaqfeh
, “
Shear-induced platelet margination in a microchannel
,”
Phys. Rev. E
83
,
061924
(
2011
).
102.
H.
Zhao
,
E. S. G.
Shaqfeh
, and
V.
Narsimhan
, “
Shear-induced particle migration and margination in a cellular suspension
,”
Phys. Fluids
24
,
011902
(
2012
).
103.
A.
Guckenberger
,
M. P.
Schraml
,
P. G.
Chen
,
M.
Leonetti
, and
S.
Gekle
, “
On the bending algorithms for soft objects in flows
,”
Comput. Phys. Commun.
207
,
1
23
(
2016
).
104.
D. W.
Marquardt
, “
An algorithm for least-squares estimation of nonlinear parameters
,”
SIAM J. Appl. Math.
11
,
431
441
(
1963
).
105.
A. R.
Conn
,
N. I. M.
Gould
, and
P. L.
Toint
,
Trust Region Methods
(
SIAM
,
2000
), Vol. 1.
106.
C.
Pozrikidis
, “
Effect of membrane bending stiffness on the deformation of capsules in simple shear flow
,”
J. Fluid Mech.
440
,
269
291
(
2001
).
107.
G.
Cipparrone
,
I.
Ricardez-Vargas
,
P.
Pagliusi
, and
C.
Provenzano
, “
Polarization gradient: Exploring an original route for optical trapping and manipulation
,”
Opt. Express
18
,
6008
6013
(
2010
).
108.
A. E.
Green
and
J. C.
Adkins
,
Large Elastic Deformations and Non-Linear Continuum Mechanics
(
Oxford University Press
,
1960
).
109.
L.
Zhu
, “
Simulation of individual cells in flow
,” Ph.D. thesis,
KTH Royal Institute of Technology
,
2014
.
110.
L.
Zhu
and
L.
Brandt
, “
The motion of a deforming capsule through a corner
,”
J. Fluid Mech.
770
,
374
397
(
2015
).
111.
M. H.
Sadd
,
Elasticity: Theory, Applications, and Numerics
(
Academic Press
,
2009
).
112.
T.
Krüger
,
Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells Under Shear
(
Springer Science & Business Media
,
2012
).
113.
E.
Lac
and
D.
Barthès-Biesel
, “
Deformation of a capsule in simple shear flow: Effect of membrane prestress
,”
Phys. Fluids
17
,
072105
(
2005
).
114.
M.
Deserno
, “
Fluid lipid membranes: From differential geometry to curvature stresses
,”
Chem. Phys. Lipids
185
,
11
45
(
2015
).
115.
J. L.
Synge
and
A.
Schild
,
Tensor Calculus
(
Courier Corporation
,
1969
), Vol. 5.
116.
A.
Daddi-Moussa-Ider
,
M.
Lisicki
, and
S.
Gekle
, “
Mobility of an axisymmetric particle near an elastic interface
,”
J. Fluid Mech.
811
,
210
233
(
2017
).
117.
O.-Y.
Zhong-Can
and
W.
Helfrich
, “
Instability and deformation of a spherical vesicle by pressure
,”
Phys. Rev. Lett.
59
,
2486
(
1987
).
118.
P. R.
Rao
,
G. I.
Zahalak
, and
S. P.
Sutera
, “
Large deformations of elastic cylindrical capsules in shear flows
,”
J. Fluid Mech.
270
,
73
90
(
1994
).
119.
C. D.
Eggleton
and
A. S.
Popel
, “
Large deformation of red blood cell ghosts in a simple shear flow
,”
Phys. Fluids
10
,
1834
1845
(
1998
).
120.
Y.
Navot
, “
Elastic membranes in viscous shear flow
,”
Phys. Fluids
10
,
1819
1833
(
1998
).
121.
Y.
Sui
,
Y. T.
Chew
,
P.
Roy
,
Y. P.
Cheng
, and
H. T.
Low
, “
Dynamic motion of red blood cells in simple shear flow
,”
Phys. Fluids
20
,
112106
(
2008
).
122.
J. R.
Clausen
and
C. K.
Aidun
, “
Capsule dynamics and rheology in shear flow: Particle pressure and normal stress
,”
Phys. Fluids
22
,
123302
(
2010
).
123.
D. J.
Bukman
,
J. H.
Yao
, and
M.
Wortis
, “
Stability of cylindrical vesicles under axial tension
,”
Phys. Rev. E
54
,
5463
(
1996
).
124.
Z. Y.
Luo
,
S. Q.
Wang
,
L.
He
,
F.
Xu
, and
B. F.
Bai
, “
Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow
,”
Soft Matter
9
,
9651
9660
(
2013
).
125.
C.
Dupont
,
A.-V.
Salsac
,
D.
Barthès-Biesel
,
M.
Vidrascu
, and
P.
Le Tallec
, “
Influence of bending resistance on the dynamics of a spherical capsule in shear flow
,”
Phys. Fluids
27
,
051902
(
2015
).
126.
O.
Aouane
,
A.
Farutin
,
M.
Thiébaud
,
A.
Benyoussef
,
C.
Wagner
, and
C.
Misbah
, “
Hydrodynamic pairing of soft particles in a confined flow
,”
Phys. Rev. Fluids
2
,
063102
(
2017
).

Supplementary Material

You do not currently have access to this content.