In this paper, we perform direct statistical simulations of a model of two-dimensional flow that exhibits a transition from jets to vortices. The model employs two-scale Kolmogorov forcing, with energy injected directly into the zonal mean of the flow. We compare these results with those from direct numerical simulations. For square domains, the solution takes the form of jets, but as the aspect ratio is increased, a transition to isolated coherent vortices is found. We find that a truncation at second order in the equal-time but nonlocal cumulants that employ zonal averaging (zonal CE2) is capable of capturing the form of the jets for a range of Reynolds numbers as well as the transition to the vortex state but, unsurprisingly, is unable to reproduce the correlations found for the fully nonlinear (non-zonally symmetric) vortex state. This result continues the program of promising advances in statistical theories of turbulence championed by Kraichnan.

1.
R. H.
Kraichnan
, “
Inertial ranges in two-dimensional turbulence
,”
Phys. Fluids
10
,
1417
1418
(
1967
).
2.
R. H.
Kraichnan
and
D.
Montgomery
, “
Two-dimensional turbulence
,”
Rep. Prog. Phys.
43
,
547
619
(
1980
).
3.
J. Y.-K.
Cho
and
L. M.
Polvani
, “
The emergence of jets and vortices in freely evolving, shallow-water turbulence on a sphere
,”
Phys. Fluids
8
,
1531
1552
(
1996
).
4.
S. J.
Bolton
,
A.
Adriani
,
V.
Adumitroaie
,
M.
Allison
,
J.
Anderson
,
S.
Atreya
,
J.
Bloxham
,
S.
Brown
,
J. E. P.
Connerney
,
E.
DeJong
,
W.
Folkner
,
D.
Gautier
,
D.
Grassi
,
S.
Gulkis
,
T.
Guillot
,
C.
Hansen
,
W. B.
Hubbard
,
L.
Iess
,
A.
Ingersoll
,
M.
Janssen
,
J.
Jorgensen
,
Y.
Kaspi
,
S. M.
Levin
,
C.
Li
,
J.
Lunine
,
Y.
Miguel
,
A.
Mura
,
G.
Orton
,
T.
Owen
,
M.
Ravine
,
E.
Smith
,
P.
Steffes
,
E.
Stone
,
D.
Stevenson
,
R.
Thorne
,
J.
Waite
,
D.
Durante
,
R. W.
Ebert
,
T. K.
Greathouse
,
V.
Hue
,
M.
Parisi
,
J. R.
Szalay
, and
R.
Wilson
, “
Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft
,”
Science
356
,
821
825
(
2017
).
5.
J. R.
Herring
and
R. H.
Kraichnan
, “
Comparison of some approximations for isotropic turbulence
,” in
Statistical Models and Turbulence: Proceedings of a Symposium Held at the University of California
(
Goddard Space Flight Center
,
1972
), pp.
148
194
.
6.
J.
Marston
,
E.
Conover
, and
T.
Schneider
, “
Statistics of an unstable barotropic jet from a cumulant expansion
,”
J. Atmos. Sci.
65
,
1955
1966
(
2008
).
7.
S.
Tobias
,
K.
Dagon
, and
J.
Marston
, “
Astrophysical fluid dynamics via direct statistical simulation
,”
Astrophys. J.
727
,
127
(
2011
).
8.
D.
Lucas
and
R.
Kerswell
, “
Spatiotemporal dynamics in two-dimensional Kolmogorov flow over large domains
,”
J. Fluid Mech.
750
,
518
554
(
2014
); e-print arXiv:1308.3356 [physics.flu-dyn].
9.
K.
Srinivasan
and
W. R.
Young
, “
Zonostrophic instability
,”
J. Atmos. Sci.
69
,
1633
1656
(
2012
).
10.
F.
Bouchet
and
E.
Simonnet
, “
Random changes of flow topology in two-dimensional and geophysical turbulence
,”
Phys. Rev. Lett.
102
,
094504
(
2009
).
11.
F.
Bouchet
and
A.
Venaille
, “
Statistical mechanics of two-dimensional and geophysical flows
,”
Phys. Rep.
515
,
227
295
(
2012
).
12.
J.
Laurie
and
F.
Bouchet
, “
Computation of rare transitions in the barotropic quasi-geostrophic equations
,”
New J. Phys.
17
,
015009
(
2015
).
13.
A.
Frishman
,
J.
Laurie
, and
G.
Falkovich
, “
Jets or vortices—What flows are generated by an inverse turbulent cascade?
,”
Phys. Rev. Fluids
2
,
032602
032608
(
2017
).
14.
B. F.
Farrell
and
P. J.
Ioannou
, “
Structure and spacing of jets in barotropic turbulence
,”
J. Atmos. Sci.
64
,
3652
3665
(
2007
).
15.
N. C.
Constantinou
,
B. F.
Farrell
, and
P. J.
Ioannou
, “
Emergence and equilibration of jets in beta-plane turbulence: Applications of stochastic structural stability theory
,”
J. Atmos. Sci.
71
,
1818
(
2014
).
16.
J.
Laurie
,
G.
Boffetta
,
G.
Falkovich
,
I.
Kolokolov
, and
V.
Lebedev
, “
Universal profile of the vortex condensate in two-dimensional turbulence
,”
Phys. Rev. Lett.
113
,
254503
254505
(
2014
).
17.
G.
Falkovich
, “
Interaction between mean flow and turbulence in two dimensions
,”
Proc. R. Soc. A
472
,
20160287
20160314
(
2016
).
18.
S.
Tobias
and
J.
Marston
, “
Direct statistical simulation of out-of-equilibrium jets
,”
Phys. Rev. Lett.
110
,
104502
(
2013
).
19.
J.
Marston
,
W.
Qi
, and
S.
Tobias
, “
Direct statistical simulation of a jet
,” preprint arXiv:1412.0381 (
2014
).
20.
F.
Ait-Chaalal
,
T.
Schneider
,
B.
Meyer
, and
J.
Marston
, “
Cumulant expansions for atmospheric flows
,”
New J. Phys.
18
,
025019
(
2016
).
21.
N. A.
Bakas
and
P. J.
Ioannou
, “
Emergence of large scale structure in barotropic β-plane turbulence
,”
Phys. Rev. Lett.
110
,
224501
(
2013
).
22.
N. A.
Bakas
,
N. C.
Constantinou
, and
P. J.
Ioannou
, “
S3T stability of the homogeneous state of barotropic beta-plane turbulence
,”
J. Atmos. Sci.
72
,
1689
1712
(
2015
).
23.
A.
Allawala
,
S. M.
Tobias
, and
J. B.
Marston
, “
Dimensional reduction of direct statistical simulation
” e-print arXiv:1708.07805.
24.
J. B.
Marston
,
G. P.
Chini
, and
S. M.
Tobias
, “
Generalized quasilinear approximation: Application to zonal jets
,”
Phys. Rev. Lett.
116
,
214501
(
2016
).
25.
A.
Child
,
R.
Hollerbach
,
B.
Marston
, and
S.
Tobias
, “
Generalised quasilinear approximation of the helical magnetorotational instability
,”
J. Plasma Phys.
82
,
905820302
(
2016
).
26.
R. H.
Kraichnan
, “
Realizability inequalities and closed moment equations
,”
Ann. N. Y. Acad. Sci.
357
,
37
46
(
1980
).
27.
R. H.
Kraichnan
, “
Decimated amplitude equations in turbulence dynamics
,” in
Theoretical Approaches to Turbulence
(
Springer New York
,
New York, NY
,
1985
), pp.
91
135
.
You do not currently have access to this content.