We discuss the phenomenology of the split energy cascade in a three-dimensional thin fluid layer by means of high resolution numerical simulations of the Navier-Stokes equations. We observe the presence of both an inverse energy cascade at large scales, as predicted for two-dimensional turbulence, and a direct energy cascade at small scales, as in three-dimensional turbulence. The inverse energy cascade is associated with a direct cascade of enstrophy in the intermediate range of scales. Notably, we find that the inverse cascade of energy in this system is not a purely 2D phenomenon, as the coupling with the 3D velocity field is necessary to guarantee the constancy of fluxes.

1.
R. H.
Kraichnan
, “
Inertial ranges in two-dimensional turbulence
,”
Phys. Fluids
10
,
1417
(
1967
).
2.
G. L.
Eyink
, “
Exact results on stationary turbulence in 2D: Consequences of vorticity conservation
,”
Phys. D
91
,
97
(
1996
).
3.
G.
Boffetta
and
R. E.
Ecke
, “
Two-dimensional turbulence
,”
Annu. Rev. Fluid Mech.
44
,
427
(
2012
).
4.
R. H.
Kraichnan
, “
Inertial-range transfer in two- and three-dimensional turbulence
,”
J. Fluid Mech.
47
,
525
(
1971
).
5.
A.
Pouquet
,
A.
Sen
,
D.
Rosenberg
,
P. D.
Mininni
, and
J.
Baerenzung
, “
Inverse cascades in turbulence and the case of rotating flows
,”
Phys. Scr.
2013
,
014032
.
6.
U.
Frisch
,
A.
Pouquet
,
J.
Léorat
, and
A.
Mazure
, “
Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence
,”
J. Fluid Mech.
68
,
769
(
1975
).
7.
M.
Chertkov
,
I.
Kolokolov
, and
M.
Vergassola
, “
Inverse versus direct cascades in turbulent advection
,”
Phys. Rev. Lett.
80
,
512
(
1998
).
8.
V. E.
Zakharov
and
M. M.
Zaslavskii
, “
The kinetic equation and Kolmogorov spectra in the weak turbulence theory of wind waves
,”
Izv. Atmos. Oceanic Phys.
18
,
747
(
1982
).
9.
U.
Frisch
and
P.-L.
Sulem
, “
Numerical simulation of the inverse cascade in two-dimensional turbulence
,”
Phys. Fluids
27
,
1921
(
1984
).
10.
J. R.
Herring
and
J. C.
McWilliams
, “
Comparison of direct numerical simulation of two-dimensional turbulence with two-point closure: The effects of intermittency
,”
J. Fluid Mech.
153
,
229
(
1985
).
11.
M. E.
Maltrud
and
G.K.
Vallis
, “
Energy spectra and coherent structures in forced two-dimensional and beta-plane turbulence
,”
J. Fluid Mech.
228
,
321
(
1991
).
12.
L. M.
Smith
and
V.
Yakhot
, “
Bose condensation and small-scale structure generation in a random force driven 2D turbulence
,”
Phys. Rev. Lett.
71
,
352
(
1993
).
13.
G.
Boffetta
,
A.
Celani
, and
M.
Vergassola
, “
Inverse energy cascade in two-dimensional turbulence: Deviations from Gaussian behavior
,”
Phys. Rev. E
61
,
R29
(
2000
).
14.
G.
Boffetta
,
A.
Celani
,
S.
Musacchio
, and
M.
Vergassola
, “
Intermittency in two-dimensional Ekman-Navier-Stokes turbulence
,”
Phys. Rev. E
66
,
026304
(
2002
).
15.
S.
Chen
,
R. E.
Ecke
,
G. L.
Eyink
,
X.
Wang
, and
Z.
Xiao
, “
Physical mechanism of the two-dimensional enstrophy cascade
,’
Phys. Rev. Lett.
91
,
214501
(
2003
).
16.
Z.
Xiao
,
M.
Wan
,
S.
Chen
, and
G. L.
Eyink
, “
Physical mechanism of the inverse energy cascade of two-dimensional turbulence: A numerical investigation
,”
J. Fluid Mech.
619
,
1
(
2009
).
17.
G.
Boffetta
and
S.
Musacchio
, “
Evidence for the double cascade scenario in two-dimensional turbulence
,”
Phys. Rev. E
82
,
016307
(
2010
).
18.
M.
Cencini
,
P.
Muratore-Ginanneschi
, and
A.
Vulpiani
, “
Nonlinear superposition of direct and inverse cascades in two-dimensional turbulence forced at large and small scales
,”
Phys. Rev. Lett.
107
,
174502
(
2011
).
19.
M. A.
Rutgers
, “
Forced 2D turbulence: Experimental evidence of simultaneous inverse energy and forward enstrophy cascades
,”
Phys. Rev. Lett.
81
,
2244
(
1998
).
20.
A.
Belmonte
,
W. I.
Goldburg
,
H.
Kellay
,
M. A.
Rutgers
,
B.
Martin
, and
X. L.
Wu
, “
Velocity fluctuations in a turbulent soap film: The third moment in two dimensions
,”
Phys. Fluids
11
,
1196
(
1999
).
21.
M.
Rivera
,
P.
Vorobieff
, and
R. E.
Ecke
, “
Turbulence in flowing soap films: Velocity, vorticity, and thickness fields
,”
Phys. Rev. Lett.
81
,
1417
(
1998
).
22.
M.
Rivera
and
X.-L.
Wu
, “
External dissipation in driven two-dimensional turbulence
,”
Phys. Rev. Lett.
85
,
976
(
2000
).
23.
M.
Rivera
and
X.-L.
Wu
, “
Homogeneity and the inertial range in driven two-dimensional turbulence
,”
Phys. Fluids
14
,
3098
(
2002
).
24.
C. H.
Bruneau
and
H.
Kellay
, “
Experiments and direct numerical simulations of two-dimensional turbulence
,”
Phys. Rev. E
71
,
046305
(
2005
).
25.
M. K.
Rivera
,
H.
Aluie
, and
R. E.
Ecke
, “
The direct enstrophy cascade of two-dimensional soap film flows
,”
Phys. Fluids
26
,
055105
(
2014
).
26.
J.
Paret
and
P.
Tabeling
, “
Experimental observation of the two-dimensional inverse energy cascade
,”
Phys. Rev. Lett.
79
,
4162
(
1997
).
27.
J.
Paret
,
M.-C.
Jullien
, and
P.
Tabeling
, “
Vorticity statistics in the two-dimensional enstrophy cascade
,”
Phys. Rev. Lett.
83
,
3418
(
1999
).
28.
H.
Kellay
and
W. I.
Goldburg
, “
Two-dimensional turbulence: A review of some recent experiments
,”
Rep. Prog. Phys.
65
,
845
(
2002
).
29.
L. M.
Smith
,
J. R.
Chasnov
, and
F.
Waleffe
, “
Crossover from two- to three-dimensional turbulence
,”
Phys. Rev. Lett.
77
,
2467
(
1996
).
30.
A.
Celani
,
S.
Musacchio
, and
D.
Vincenzi
, “
Turbulence in more than two and less than three dimensions
,”
Phys. Rev. Lett.
104
,
184506
(
2010
).
31.
H.
Xia
,
D.
Byrne
,
G.
Falkovich
, and
M.
Shats
, “
Upscale energy transfer in thick turbulent fluid layers
,”
Nat. Phys.
7
,
321
(
2011
).
32.
D.
Byrne
,
H.
Xia
, and
M.
Shats
, “
Robust inverse energy cascade and turbulence structure in three-dimensional layers of fluid
,”
Phys. Fluids
23
,
095109
(
2011
).
33.
G.
Boffetta
,
F.
De Lillo
, and
S.
Musacchio
, “
Shell model for quasi-two-dimensional turbulence
,”
Phys. Rev. E
83
,
066302
(
2011
).
34.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
MIT Press
,
1972
).
35.
M.
Chertkov
,
C.
Connaughton
,
I.
Kolokolov
, and
V.
Lebedev
, “
Dynamics of energy condensation in two-dimensional turbulence
,”
Phys. Rev. Lett.
99
,
084501
(
2007
).
36.
H.
Xia
,
M.
Shats
, and
G.
Falkovich
, “
Spectrally condensed turbulence in thin layers
,”
Phys. Fluids
21
,
125101
(
2009
).
37.
J.
Laurie
,
G.
Boffetta
,
G.
Falkovich
,
I.
Kolokolov
, and
V.
Lebedev
, “
Universal profile of the vortex condensate in two-dimensional turbulence
,”
Phys. Rev. Lett.
113
,
254503
(
2014
).
38.
G. D.
Nastrom
and
K. S.
Gage
, “
A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft
,”
J. Atmos. Sci.
42
,
950
(
1985
).
39.
D. K.
Lilly
, “
Stratified turbulence and the mesoscale variability of the atmosphere
,”
J. Atmos. Sci.
40
,
749
(
1983
).
40.
A.
Vallgren
,
E.
Deusebio
, and
E.
Lindborg
, “
Possible explanation of the atmospheric kinetic and potential energy spectra
,”
Phys. Rev. Lett.
107
,
268501
(
2011
).
41.
A.
Campagne
,
B.
Gallet
,
F.
Moisy
, and
P.-P.
Cortet
, “
Direct and inverse energy cascades in a forced rotating turbulence experiment
,”
Phys. Fluids
26
,
125112
(
2014
).
42.
H. K.
Moffatt
, “
Note on the triad interactions of homogeneous turbulence
,”
J. Fluid Mech.
741
,
R3
(
2014
).
43.
L.
Biferale
,
M.
Buzzicotti
, and
M.
Linkmann
, e-print arXiv:1706.02371 [physics.flu-dyn] (
2017
).
44.
E.
Deusebio
,
G.
Boffetta
,
E.
Lindborg
, and
S.
Musacchio
, “
Dimensional transition in rotating turbulence
,”
Phys. Rev. E
90
,
023005
(
2014
).
45.
A.
Sozza
,
G.
Boffetta
,
P.
Muratore-Ginanneschi
, and
S.
Musacchio
, “
Dimensional transition of energy cascades in stably stratified forced thin fluid layers
,”
Phys. Fluids
27
,
035112
(
2015
).
You do not currently have access to this content.