We survey the role of coherent vortices in two-dimensional turbulence, including formation mechanisms, implications for classical similarity and inertial range theories, and characteristics of the vortex populations. We review early work on the spatial and temporal scaling properties of vortices in freely evolving turbulence and more recent developments, including a spatiotemporal scaling theory for vortices in the forced inverse energy cascade. We emphasize that Kraichnan-Batchelor similarity theories and vortex scaling theories are best viewed as complementary and together provide a more complete description of two-dimensional turbulence. In particular, similarity theory has a continued role in describing the weak filamentary sea between the vortices. Moreover, we locate both classical inertial and vortex scaling ranges within the broader framework of scaling in far-from-equilibrium systems, which generically exhibit multiple fixed point solutions with distinct scaling behaviour. We describe how stationary transport in a range of scales comoving with the dilatation of flow features, as measured by the growth in vortex area, constrains the vortex number density in both freely evolving and forced two-dimensional turbulence. The new theories for coherent vortices reveal previously hidden nontrivial scaling, point to new dynamical understanding, and provide a novel exciting window into two-dimensional turbulence.

1.
R.
Benzi
,
S.
Patarnello
, and
P.
Santangelo
, “
Self-similar coherent structures in two-dimensional decaying turbulence
,”
J. Phys. A: Math. Gen.
21
,
1221
1237
(
1988
).
2.
R.
Benzi
,
M.
Collela
,
M.
Briscolini
, and
P.
Santangelo
, “
A simple point vortex model for two-dimensional decaying turbulence
,”
Phys. Fluids A
4
,
1036
1039
(
1992
).
3.
G. F.
Carnevale
,
J. C.
McWilliams
,
Y.
Pomeau
,
J. B.
Weiss
, and
W. R.
Young
, “
Evolution of vortex statistics in two-dimensional turbulence
,”
Phys. Rev. Lett.
66
,
2735
2738
(
1991
).
4.
J. B.
Weiss
and
J. C.
McWilliams
, “
Temporal scaling behavior of decaying two-dimensional turbulence
,”
Phys. Fluids A
5
,
608
621
(
1993
).
5.
D. G.
Dritschel
,
R. K.
Scott
,
C.
Macaskill
,
G. A.
Gottwald
, and
C. V.
Tran
, “
Unifying scaling theory for vortex dynamics in two-dimensional turbulence
,”
Phys. Rev. Lett.
101
,
094501
(
2008
).
6.
J.
Fontane
,
D. G.
Dritschel
, and
R. K.
Scott
, “
Vortical control of forced two-dimensional turbulence
,”
Phys. Fluids
25
,
015101
(
2013
).
7.
B. H.
Burgess
and
R. K.
Scott
, “
Scaling theory for vortices in the two-dimensional inverse energy cascade
,”
J. Fluid Mech.
811
,
742
756
(
2017
).
8.
G. K.
Batchelor
, “
Computation of the energy spectrum in homogeneous two-dimensional turbulence
,”
Phys. Fluids
12
(
Suppl. 12
),
II-233–II-239
(
1969
).
9.
R. H.
Kraichnan
, “
Inertial ranges in two-dimensional turbulence
,”
Phys. Fluids
10
,
1417
1423
(
1967
).
10.
B. H.
Burgess
,
R. K.
Scott
, and
T. G.
Shepherd
, “
Kraichnan-Leith-Batchelor similarity theory and two-dimensional inverse cascades
,”
J. Fluid Mech.
767
,
467
496
(
2015
).
11.
J. C.
McWilliams
, “
A demonstration of the suppression of turbulent cascades by coherent vortices in two-dimensional turbulence
,”
Phys. Fluids A
2
,
547
552
(
1990
).
12.
P.
Bartello
and
T.
Warn
, “
Self-similarity of decaying two-dimensional turbulence
,”
J. Fluid Mech.
326
,
357
372
(
1996
).
13.
J.
Berges
and
D.
Mesterhazy
, “
Introduction to the nonequilibrium functional renormalization group
,”
Nucl. Phys. B, Proc. Suppl.
228
,
37
60
(
2012
).
14.
B. H.
Burgess
,
D. G.
Dritschel
, and
R. K.
Scott
, “
Extended scale invariance in the vortices of freely evolving two-dimensional turbulence
,”
Phys. Rev. Fluids
(submitted).
15.
P.
Santangelo
,
R.
Benzi
, and
B.
Legras
, “
The generation of vortices in high-resolution, two-dimensional decaying turbulence and the influence of initial conditions on the breaking of self-similarity
,”
Phys. Fluids A
1
(
6
),
1027
1034
(
1989
).
16.
J. C.
McWilliams
, “
The vortices of two-dimensional turbulence
,”
J. Fluid Mech.
219
,
361
385
(
1990
).
17.
J. C.
McWilliams
, “
The emergence of isolated coherent vortices in turbulent flow
,”
J. Fluid Mech.
146
,
21
43
(
1984
).
18.
R.
Benzi
,
S.
Patarnello
, and
P.
Santangelo
, “
On the statistical properties of two-dimensional decaying turbulence
,”
Europhys. Lett.
3
,
811
818
(
1987
).
19.
R.
Benzi
,
G.
Paladin
,
S.
Patarnello
,
P.
Santangelo
, and
A.
Vulpiani
, “
Intermittency and coherent structures in two-dimensional turbulence
,”
J. Phys. A: Math. Gen.
19
,
3771
(
1986
).
20.
A.
Babiano
,
C.
Basdevant
,
B.
Legras
, and
R.
Sadourny
, “
Vorticity and passive-scalar dynamics in two-dimensional turbulence
,”
J. Fluid Mech.
183
,
379
397
(
1987
).
21.
L. M.
Smith
and
V.
Yakhot
, “
Finite-size effects in forced two-dimensional turbulence
,”
J. Fluid Mech.
274
,
115
138
(
1994
).
22.
V.
Borue
, “
Inverse energy cascade in stationary two-dimensional homogeneous turbulence
,”
Phys. Rev. Lett.
72
,
1475
1478
(
1994
).
23.
R. K.
Scott
, “
Nonrobustness of the two-dimensional turbulent inverse cascade
,”
Phys. Rev. E
75
,
046301
(
2007
).
24.
A.
Vallgren
, “
Infrared Reynolds number dependency of the two-dimensional inverse energy cascade
,”
J. Fluid Mech.
667
,
463
473
(
2011
).
25.
B. H.
Burgess
and
R. K.
Scott
, “
Robust vortex populations in the two-dimensional inverse energy cascade
,”
J. Fluid Mech.
(submitted).
26.
G.
Haller
,
A.
Hadjighasem
,
M.
Farazmand
, and
F.
Huhn
, “
Defining coherent vortices objectively from the vorticity
,”
J. Fluid Mech.
795
,
136
173
(
2016
).
27.
N. J.
Zabusky
, “
Contour dynamics for the Euler equations in two dimensions
,”
J. Comp. Phys.
30
,
96
106
(
1979
).
28.
M. A.
Virasoro
, “
Variational principle for two-dimensional incompressible hydrodynamics and quasigeostrophic flows
,”
Phys. Rev. Lett.
47
,
1181
1183
(
1981
).
29.
M.
Roos
,
Introduction to Cosmology
, 4th ed. (
Wiley
,
Chichester, UK
,
2015
).
30.
D. G.
Dritschel
and
D. W.
Waugh
, “
Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics
,”
Phys. Fluids A
4
,
1737
1744
(
1992
).
31.
P.
Tabeling
,
S.
Burkhart
,
O.
Cardoso
, and
H.
Willaime
, “
Experimental study of two-dimensional freely decaying turbulence
,”
Phys. Rev. Lett.
67
,
3772
(
1991
).
32.
O.
Cardoso
,
D.
Marteau
, and
P.
Tabeling
, “
Quantitative experimental study of the free decay of quasi-two-dimensional turbulence
,”
Phys. Rev. E
49
,
454
(
1994
).
33.
E. A.
Hansen
,
D.
Marteau
, and
P.
Tabeling
, “
Two-dimensional turbulence and dispersion in a freely decaying system
,”
Phys. Rev. E
58
,
7261
(
1998
).
34.
A.
Bracco
,
J. C.
McWilliams
,
G.
Murate
,
A.
Provenzale
, and
J. B.
Weiss
, “
Revisiting freely decaying two-dimensional turbulence at millenial resolution
,”
Phys. Fluids
12
,
2931
(
2000
).
35.
A.
Trizac
, “
A coalescence model for freely decaying two-dimensional turbulence
,”
Europhys. Lett.
43
,
671
(
1998
).
36.
H. J. H.
Clercx
and
A. H.
Nielsen
, “
Vortex statistics for turbulence in a container with rigid boundaries
,”
Phys. Rev. Lett.
85
,
752
(
2000
).
37.
C.
Sire
and
P.-H.
Chavanis
, “
Numerical renormalization group of vortex aggregation in two-dimensional decaying turbulence: The role of three-body interactions
,”
Phys. Rev. E
61
,
6644
(
2000
).
38.
L. J. A.
van Bokhoven
,
R. R.
Trieling
,
H. J. H.
Clercx
, and
G. J. F.
van Heijst
, “
Influence of initial conditions on decaying two-dimensional turbulence
,”
Phys. Fluids
19
,
046601
(
2007
).
39.
G. F.
Carnevale
,
Y.
Pomeau
, and
W. R.
Young
, “
Statistics of ballistic agglomeration
,”
Phys. Rev. Lett.
64
,
2913
(
1990
).
40.
A.
Trizac
and
J.-P.
Hansen
, “
Dynamics and growth of particles undergoing ballistic coalescence
,”
J. Stat. Phys.
82
,
1345
(
1996
).
41.
G.
Huber
and
P.
Alstrom
, “
Universal decay of vortex density in two dimensions
,”
Phys. A
195
,
448
(
1993
).
42.
Y.
Pomeau
, “
Vortex dynamics in perfect fluids
,”
J. Plasma Phys.
56
,
407
(
1996
).
43.
T.
Iwayama
,
H.
Fujisaka
, and
H.
Okamoto
, “
Phenomenological determination of scaling exponents in two-dimensional decaying turbulence
,”
Prog. Theor. Phys.
98
,
1219
(
1997
).
44.
J. H.
LaCasce
, “
The vortex merger rate in freely decaying, two-dimensional turbulence
,”
Phys. Fluids
20
,
085102
(
2008
).
45.
D. G.
Dritschel
and
J.
Fontane
, “
The combined Lagrangian advection method
,”
J. Comput. Phys.
229
,
5408
5417
(
2010
).
46.
D. G.
Dritschel
, “
Vortex properties of two-dimensional turbulence
,”
Phys. Fluids A
5
,
984
(
1993
).
47.
J. G.
Charney
, “
Geostrophic turbulence
,”
J. Atmos. Sci.
28
,
1087
1095
(
1971
).
48.
J. N.
Reinaud
,
D. G.
Dritschel
, and
C. R.
Koudella
, “
The shape of vortices in quasi-eostrophic turbulence
,”
J. Fluid Mech.
474
,
175
192
(
2003
).
You do not currently have access to this content.