The intermittency of turbulent superfluid helium is explored systematically in a steady wake flow from 1.28 K up to T>2.18K using a local anemometer. This temperature range spans relative densities of superfluids from 96% down to 0%, allowing us to test numerical predictions of enhancement or depletion of intermittency at intermediate superfluid fractions. Using the so-called extended self-similarity method, scaling exponents of structure functions have been calculated. No evidence of temperature dependence is found on these scaling exponents in the upper part of the inertial cascade, where turbulence is well developed and fully resolved by the probe. This result supports the picture of a profound analogy between classical and quantum turbulence in their inertial range, including the violation of self-similarities associated with inertial-range intermittency.

1.
R. J.
Donnelly
,
Quantized Vortices in Helium-II
, Cambridge Studies in Low Temperature Physics (
Cambridge University Press
,
Cambridge
,
1991
).
2.
S. W.
Van Sciver
,
Helium Cryogenics
, International Cryogenics Monograph Series (
Springer
,
2012
).
3.
C. F.
Barenghi
,
L.
Skrbek
, and
K. R.
Sreenivasan
, “
Introduction to quantum turbulence
,”
Proc. Natl. Acad. Sci. U. S. A.
111
(
Suppl. 1
),
4647
4652
(
2014
).
4.
C. F.
Barenghi
,
V. S.
L’vov
, and
P.-E.
Roche
, “
Experimental, numerical, and analytical velocity spectra in turbulent quantum fluid
,”
Proc. Natl. Acad. Sci. U. S. A.
111
(
Suppl. 1
),
4683
4690
(
2014
).
5.
J.
Salort
 et al., “
Energy cascade and the four-fifths law in superfluid turbulence
,”
Europhys. Lett.
97
,
34006
(
2012
).
6.
U.
Frisch
,
Turbulence: The Legacy of A. N. Kolmogorov
(
Cambridge University Press
,
1995
).
7.
K. R.
Sreenivasan
and
R. A.
Antonia
, “
The phenomenology of small-scale turbulence
,”
Annu. Rev. Fluid Mech.
29
,
435
(
1997
).
8.
A.
Tsinober
,
The Essence of Turbulence as a Physical Phenomenon: With Emphasis on Issues of Paradigmatic Nature
(
Springer Science & Business Media
,
2013
).
9.
R.
Benzi
and
L.
Biferale
, “
Homogeneous and isotropic turbulence: A short survey on recent developments
,”
J. Stat. Phys.
161
(
6
),
1351
1365
(
2015
).
10.
J.
Maurer
and
P.
Tabeling
, “
Local investigation of superfluid turbulence
,”
Europhys. Lett.
43
,
29
(
1998
).
11.
J.
Salort
,
B.
Chabaud
,
E.
Lévêque
, and
P. E.
Roche
, “
Investigation of intermittency in superfluid turbulence
,”
J. Phys.: Conf. Ser.
318
,
042014
(
2011
).
12.
L.
Boué
 et al., “
Enhancement of intermittency in superfluid turbulence
,”
Phys. Rev. Lett.
110
,
014502
(
2013
).
13.
L.
Biferale
, “
Shell models of energy cascade in turbulence
,”
Annu. Rev. Fluid Mech.
35
(
1
),
441
468
(
2003
).
14.
V.
Shukla
and
R.
Pandit
, “
Multiscaling in superfluid turbulence: A shell-model study
,”
Phys. Rev. E
94
,
043101
(
2016
).
15.
M.
Bakhtaoui
and
L.
Merahi
, “
Analysis of the energy budget in quantum turbulence: HVBK model
,”
J. Low Temp. Phys.
178
,
129
141
(
2015
).
16.
G.
Krstulovic
, “
Grid superfluid turbulence and intermittency at very low temperature
,”
Phys. Rev. E
93
,
063104
(
2016
).
17.
E.
Rusaouen
,
B.
Rousset
, and
P.-E.
Roche
, “
Detection of vortex coherent structures in superfluid turbulence
,”
Europhys. Lett.
118
,
14005
(
2017
).
18.
H.
Kahalerras
,
Y.
Malecot
,
Y.
Gagne
, and
B.
Castaing
, “
Intermittency and Reynolds number
,”
Phys. Fluids
10
,
910
(
1998
).
19.
T.
Carmody
, “
Establishment of the wake behind a disk
,”
J. Basic Eng.
86
,
869
(
1964
).
20.
S.
Cannon
,
F.
Champagne
, and
A.
Glezer
, “
Observations of large-scale structures in wakes behind axisymmetric bodies
,”
Exp. Fluid.
14
,
447
(
1993
).
21.
P. B. V.
Johansson
,
W. K.
George
, and
S. H.
Woodward
, “
Proper orthogonal decomposition of an axisymmetric turbulent wake behind a disk
,”
Phys. Fluid.
14
,
2508
(
2002
).
22.
P. B. V.
Johansson
,
S. H.
Woodward
, and
W. K.
George
, “
The far downstream evolution of the high-Reynolds-number axisymmetric wake behind a disk. Part 1. Single-point statistics
,”
J. Fluid Mech.
555
,
363
(
2006
).
23.
R. D.
Mehta
and
P.
Bradshaw
, “
Design rules for small low speed wind tunnels
,”
Aeronaut. J.
83
,
443
453
(
1979
).
24.
J.
Salort
,
P. E.
Roche
, and
A.
Monfardini
, “
Cantilever anemometer based on a superconducting micro-resonator: Application to superfluid turbulence
,”
Rev. Sci. Instrum.
83
,
125002
(
2012
).
25.
J.
Salort
 et al., “
Joint temperature and velocity local sensor for turbulent flows
,”
Rev. Sci. Instrum.
(submitted).
26.
J. E.
Sader
, “
Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope
,”
J. Appl. Phys.
84
,
64
76
(
1998
).
27.
J.
Salort
 et al., “
Turbulent velocity spectra in superfluid flows
,”
Phys. Fluids
22
,
125102
(
2010
).
28.
P.-E.
Roche
,
C. F.
Barenghi
, and
E.
Leveque
, “
Quantum turbulence at finite temperature: The two-fluids cascade
,”
Europhys. Lett.
87
(
5
),
54006
(
2009
).
29.
S. F.
Hoerner
,
Fluid-Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistence
(
Hoerner Fluid Dynamics
,
1965
).
30.
B.
Rousset
,
P.
Bonnay
,
P.
Diribarne
,
A.
Girard
,
J. M.
Poncet
,
E.
Herbert
,
J.
Salort
,
C.
Baudet
,
B.
Castaing
,
L.
Chevillard
,
F.
Daviaud
,
B.
Dubrulle
,
Y.
Gagne
,
M.
Gibert
,
B.
Hébral
,
T.
Lehner
,
P.-E.
Roche
,
B.
Saint-Michel
, and
M.
Bon Mardion
, “
Superfluid high Reynolds von Kármán experiment
,”
Rev. Sci. Instrum.
85
,
103908
(
2014
).
31.
P.-E.
Roche
,
P.
Diribarne
,
T.
Didelot
,
O.
Français
,
L.
Rousseau
, and
H.
Willaime
, “
Vortex density spectrum of quantum turbulence
,”
Europhys. Lett.
77
,
66002
(
2007
).
32.
D.
Durì
,
C.
Baudet
,
J.-P.
Moro
,
P.-E.
Roche
, and
P.
Diribarne
, “
Hot-wire anemometry for superfluid turbulent coflows
,”
Rev. Sci. Instrum.
86
(
2
),
025007
(
2015
).
33.
P. W.
Bearman
, “
On vortex shedding from a circular cylinder in the critical Reynolds number regime
,”
J. Fluid Mech.
37
,
577
(
1969
).
34.
J.-F.
Pinton
and
R.
Labbé
, “
Correction to the Taylor hypothesis in swirling flows
,”
J. Phys. II
4
,
1461
1468
(
1994
).
35.
R. A.
Antonia
,
T.
Zhou
, and
J. P.
Romano
, “
Small-scale turbulence characteristics of two-dimensional bluff body wakes
,”
J. Fluid Mech.
459
,
67
(
2002
).
36.
J.
Qian
, “
Slow decay of the finite Reynolds number effect of turbulence wakes
,”
Phys. Rev. E
60
,
3409
3412
(
1999
).
37.
R. A.
Antonia
and
P.
Burattini
, “
Approach to the 4/5 law in homogeneous isotropic turbulence
,”
J. Fluid Mech.
550
,
175
(
2006
).
38.
F.
Coscarella
,
S.
Servidio
,
D.
Ferraro
,
V.
Carbone
, and
R.
Gaudio
, “
Turbulent energy dissipation rate in a tilting flume with a highly rough bed
,”
Phys. Fluids
29
,
085101
(
2017
).
39.
R.
Benzi
 et al., “
Extended self-similarity in turbulent flows
,”
Phys. Rev. E
48
,
R29
(
1993
).
40.
Z.-S.
She
and
E.
Lévêque
, “
Universal scaling laws in fully developed turbulence
,”
Phys. Rev. Lett.
72
,
336
(
1994
).
41.
E.
Leveque
and
Z.-S.
She
, “
Viscous effects on inertial range scalings in a dynamical model of turbulence
,”
Phys. Rev. Lett.
75
,
2690
2693
(
1995
).
42.
J.
Salort
,
P.-E.
Roche
, and
E.
Lévêque
, “
Mesoscale equipartition of kinetic energy in quantum turbulence
,”
Europhys. Lett.
94
,
24001
(
2011
).
You do not currently have access to this content.