In this work, an analytical solution for the pressure-driven flow of a discontinuous shear-thickening (DST) fluid in a planar channel is presented. In order to model the fluid rheology, a regularized inverse-biviscous model is adopted. This involves a region of finite thickness to model the sharp jump in viscosity, and it is consistent with momentum conservation. In the limit of vanishing thickness, the truly DST behavior is obtained. Analytical results are validated by numerical simulations under steady and start-up flow using the smoothed particle hydrodynamics method. Flow results are investigated and discussed for different values of the model parameters.
REFERENCES
1.
N. J.
Wagner
and J. F.
Brady
, “Shear thickening in colloidal dispersions
,” Phys. Today
62
(10
), 27
–32
(2009
).2.
Y. S.
Lee
, E. D.
Wetzel
, and N. J.
Wagner
, “The ballistic impact characteristics of Kevlar®Woven fabrics impregnated with a colloidal shear thickening fluid
,” J. Mater. Sci.
38
, 2825
–2833
(2003
).3.
J. N.
Fowler
, A. A.
Pallanta
, C. B.
Swanik
, and N. J.
Wagner
, “The use of shear thickening nanocomposites in impact resistant materials
,” J. Biomech. Eng.
137
, 054504
(2015
).4.
H. A.
Barnes
, “Shear-thickening (‘dilatancy’) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids
,” J. Rheol.
33
, 329
–366
(1989
).5.
R. J.
Morgan
, “A study of the phenomenon of rheological dilatancy in an aqueous pigment suspension
,” Trans. Soc. Rheol.
12
, 511
–533
(1968
).6.
H.
Freundlich
and H. L.
Roder
, “Dilatancy and its relation to thixotropy
,” Trans. Faraday Soc.
34
, 308
–316
(1938
).7.
R.
Hoffman
, “Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests
,” J. Colloid Interface Sci.
46
, 491
–506
(1974
).8.
J. F.
Brady
and G.
Bossis
, “The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation
,” J. Fluid Mech.
155
, 105
–129
(1985
).9.
D. R.
Foss
and J. F.
Brady
, “Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulation
,” J. Fluid Mech.
407
, 167
–200
(2000
).10.
A.
Sierou
and J. F.
Brady
, “Rheology and microstructure in concentrated noncolloidal suspensions
,” J. Rheol.
46
, 1031
–1056
(2002
).11.
J.
Mewis
and N. J.
Wagner
, Colloidal Suspension Rheology
(Cambridge University Press
, 2011
), Cambridge Books Online.12.
X.
Cheng
, J. H.
McCoy
, J. N.
Israelachvili
, and I.
Cohen
, “Imaging the microscopic structure of shear thinning and thickening colloidal suspensions
,” Science
333
, 1276
–1279
(2011
).13.
J.
Bender
and N. J.
Wagner
, “Reversible shear thickening in monodisperse and bidisperse colloidal dispersions
,” J. Rheol.
40
, 899
–916
(1996
).14.
B. J.
Maranzano
and N. J.
Wagner
, “Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition
,” J. Chem. Phys.
117
, 10291
–10302
(2002
).15.
H. M.
Laun
, R.
Bung
, S.
Hess
, W.
Loose
, O.
Hess
, K.
Hahn
, E.
Hädicke
, R.
Hingmann
, F.
Schmidt
, and P.
Lindner
, “Rheological and small angle neutron scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flow
,” J. Rheol.
36
, 743
–787
(1992
).16.
J. W.
Bender
and N. J.
Wagner
, “Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions
,” J. Colloid Interface Sci.
172
, 171
–184
(1995
).17.
S.
Jamali
, A.
Boromand
, N.
Wagner
, and J.
Maia
, “Microstructure and rheology of soft to rigid shear-thickening colloidal suspensions
,” J. Rheol.
59
, 1377
–1395
(2015
).18.
X.
Bian
, S.
Litvinov
, M.
Ellero
, and N. J.
Wagner
, “Hydrodynamic shear thickening of particulate suspension under confinement
,” J. Non-Newtonian Fluid Mech.
213
, 39
–49
(2014
).19.
C. B.
Holmes
, M. E.
Cates
, M.
Fuchs
, and P.
Sollich
, “Glass transitions and shear thickening suspension rheology
,” J. Rheol.
49
, 237
–269
(2005
).20.
S. R.
Waitukaitis
and H. M.
Jaeger
, “Impact-activated solidification of dense suspensions via dynamic jamming fronts
,” Nature
487
, 205
–209
(2012
).21.
R.
Seto
, R.
Mari
, J. F.
Morris
, and M. M.
Denn
, “Discontinuous shear thickening of frictional hard-sphere suspensions
,” Phys. Rev. Lett.
111
, 218301
(2013
).22.
N.
Fernandez
, R.
Mani
, D.
Rinaldi
, D.
Kadau
, M.
Mosquet
, H.
Lombois-Burger
, J.
Cayer-Barrioz
, H. J.
Herrmann
, N. D.
Spencer
, and L.
Isa
, “Microscopic mechanism for shear thickening of non-Brownian suspensions
,” Phys. Rev. Lett.
111
, 108301
(2013
).23.
N. Y. C.
Lin
, B. M.
Guy
, M.
Hermes
, C.
Ness
, J.
Sun
, W. C. K.
Poon
, and I.
Cohen
, “Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions
,” Phys. Rev. Lett.
115
, 228304
(2015
).24.
P. M.
Kulkarni
and J. F.
Morris
, “Suspension properties at finite Reynolds number from simulated shear flow
,” Phys. Fluids
20
, 040602
(2008
).25.
F.
Picano
, W.-P.
Breugem
, D.
Mitra
, and L.
Brandt
, “Shear thickening in non-Brownian suspensions: An excluded volume effect
,” Phys. Rev. Lett.
111
, 098302
(2013
).26.
I.
Lashgari
, F.
Picano
, W.-P.
Breugem
, and L.
Brandt
, “Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions
,” Phys. Rev. Lett.
113
, 254502
(2014
).27.
R.
Scirocco
, J.
Vermant
, and J.
Mewis
, “Shear thickening in filled boger fluids
,” J. Rheol.
49
, 551
–567
(2005
).28.
S.
Guillou
and R.
Makhloufi
, “Effect of a shear-thickening rheological behaviour on the friction coefficient in a plane channel flow: A study by direct numerical simulation
,” J. Non-Newtonian Fluid Mech.
144
, 73
–86
(2007
).29.
M. M.
Nejad
and K.
Javaherdeh
, “Numerical simulation of power-law fluids flow and heat transfer in a parallel-plate channel with transverse rectangular cavities
,” Case Stud. Therm. Eng.
3
, 68
–78
(2014
).30.
L.
Ferrás
, J.
Nóbrega
, and F.
Pinho
, “Analytical solutions for Newtonian and inelastic non-Newtonian flows with wall slip
,” J. Non-Newtonian Fluid Mech.
175-176
, 76
–88
(2012
).31.
I.
Lashgari
, J. O.
Pralits
, F.
Giannetti
, and L.
Brandt
, “First instability of the flow of shear-thinning and shear-thickening fluids past a circular cylinder
,” J. Fluid Mech.
701
, 201
–227
(2012
).32.
J.
Marn
and P.
Ternik
, “Laminar flow of a shear-thickening fluid in a 90° pipe bend
,” Fluid Dyn. Res.
38
, 295
–312
(2006
).33.
W.
Wu
, X.
Huang
, H.
Yuan
, F.
Xu
, and J.
Ma
, “A modified lattice Boltzmann method for Herschel-Bulkley fluids
,” Rheol. Acta
56
, 369
–376
(2017
).34.
C. D.
Cwalina
and N. J.
Wagner
, “Material properties of the shear-thickened state in concentrated near hard-sphere colloidal dispersions
,” J. Rheol.
58
, 949
–967
(2014
).35.
C. D.
Cwalina
and N. J.
Wagner
, “Rheology of non-Brownian particles suspended in concentrated colloidal dispersions at low particle Reynolds number
,” J. Rheol.
60
, 47
–59
(2016
).36.
A.
Vázquez-Quesada
and M.
Ellero
, “Analytical solution for the lubrication force between two spheres in a bi-viscous fluid
,” Phys. Fluids
28
, 073101
(2016
).37.
P.
Español
and M.
Revenga
, “Smoothed dissipative particle dynamics
,” Phys. Rev. E
67
, 026705
(2003
).38.
J. J.
Monaghan
, “Smoothed particle hydrodynamics
,” Rep. Prog. Phys.
68
, 1703
(2005
).39.
J. P.
Morris
, P. J.
Fox
, and Y.
Zhu
, “Modeling low Reynolds number incompressible flows using SPH
,” J. Comput. Phys.
136
, 214
–226
(1997
).40.
M.
Ellero
and R.
Tanner
, “SPH simulations of transient viscoelastic flows at low Reynolds number
,” J. Non-Newtonian Fluid Mech.
132
, 61
–72
(2005
).41.
A.
Vázquez-Quesada
and M.
Ellero
, “SPH simulations of a viscoelastic flow around a periodic array of cylinders confined in a channel
,” J. Non-Newtonian Fluid Mech.
167
, 1
–8
(2012
).42.
M.
Grilli
, A.
Vázquez-Quesada
, and M.
Ellero
, “Transition to turbulence and mixing in a viscoelastic fluid flowing inside a channel with a periodic array of cylindrical obstacles
,” Phys. Rev. Lett.
110
, 174501
(2013
).43.
M.
Hermes
, B. M.
Guy
, W. C. K.
Poon
, G.
Poy
, M. E.
Cates
, and M.
Wyart
, “Unsteady flow and particle migration in dense, non-Brownian suspensions
,” J. Rheol.
60
, 905
–916
(2016
).44.
A.
Vázquez-Quesada
, R. I.
Tanner
, and M.
Ellero
, “Shear thinning of noncolloidal suspensions
,” Phys. Rev. Lett.
117
, 108001
(2016
).45.
A.
Vázquez-Quesada
and M.
Ellero
, “Rheology and microstructure of non-colloidal suspensions under shear studied with smoothed particle hydrodynamics
,” J. Non-Newtonian Fluid Mech.
233
, 37
–47
(2016
).46.
P. R.
Nott
and J. F.
Brady
, “Pressure-driven flow of suspensions: Simulation and theory
,” J. Fluid Mech.
275
, 157
–199
(1994
).47.
H.
Nakanishi
, S.-I.
Nagahiro
, and N.
Mitarai
, “Fluid dynamics of dilatant fluids
,” Phys. Rev. E
85
, 011401
(2012
).© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.