A thorough physical understanding of gas entrainment within a liquid pool is established using a pair of fully submerged cylinders with an opposite but symmetric rotational field. An asymmetric version of such entrainment of gaseous filaments inside a liquid has been demonstrated in our earlier work [P. Kumar, A. K. Das and S. K. Mitra, Phys. Fluids 29, 022101 (2017)]. Here, our efforts focus on revealing the governing factors and understanding the stages of alteration from a stratified to an undulating interface for a wide range of symmetric cylinder rotations. Interfacial configurations such as an upper rounded crest, a bubble-ejecting jet, and a non-collapsible jet with an air pocket in the stagnant zone are obtained as the cylinder rotation increases. Near the critical capillary number, air pinch-off into a filament and subsequent stable collapse of this filament into bubbles were observed. As the rotation-driven capillary number increased, we noted the formation of an entrained jet of gaseous-phase forming air pockets in the region, which resulted in a diverging rotational field. Our analysis of the fluid stream explains the interfacial configurations and corresponding entrainment patterns based on fundamental physics. The power-law fit (Y = KXm) of the cusp profiles revealed close agreement with numerically obtained interfaces. We propose correlation coefficients as a function of the capillary number. We also assess the dependence of the entrainment pattern on cylinder submergence and spacing.

1.
D. D.
Joseph
,
K.
Nguyen
, and
G. S.
Beavers
, “
Non-uniqueness and stability of the configuration of flow of immiscible fluids with different viscosities
,”
J. Fluid Mech.
141
,
319
(
1984
).
2.
D. D.
Joseph
,
J.
Nelson
,
M.
Renardy
, and
Y.
Renardy
, “
Two-dimensional cusped interfaces
,”
J. Fluid Mech.
223
,
383
(
1991
).
3.
J.
Jeong
and
H. K.
Moffatt
, “
Free-surface cusp associated with flow at low Reynolds number
,”
J. Fluid Mech.
241
,
1
(
1992
).
4.
D. D.
Joseph
, “
Understanding cusped interfaces
,”
J. Non-Newtonian Fluid Mech.
44
,
127
(
1992
).
5.
B.
Bolton
and
S.
Middleman
, “
Air entrainment in a roll coating system
,”
Chem. Eng. Sci.
35
(
3
),
597
(
1980
).
6.
S.
Tharmalingam
and
W. L.
Wilkinson
, “
The coating of Newtonian liquids onto a rotating roll
,”
Chem. Eng. Sci.
33
,
1481
(
1978
).
7.
O. H.
Campanella
and
R. L.
Cerro
, “
Viscous flow on the outside of a horizontal rotating cylinder: The roll coating regime with a single fluid
,”
Chem. Eng. Sci.
39
(
10
),
1443
(
1984
).
8.
M. S.
Carvalho
and
L. E.
Scriven
, “
Three-dimensional stability analysis of free surface flows: Application to forward deformable roll coating
,”
J. Comput. Phys.
151
(
2
),
534
(
1999
).
9.
S. H.
Yu
,
K. S.
Lee
, and
S. J.
Yook
, “
Film flow around a fast rotating roller
,”
Int. J. Heat Fluid Flow
30
,
796
(
2009
).
10.
J. T.
Jeong
, “
Formation of cusp on the free surface at low Reynolds number flow
,”
Phys. Fluids
11
(
3
),
521
(
1999
).
11.
J. T.
Jeong
, “
Two-dimensional Stokes flow due to a pair of vortices below the free surface
,”
Phys. Fluids
22
(
8
),
082102
(
2010
).
12.
P.
Kumar
,
A. K.
Das
, and
S. K.
Mitra
, “
Bending and growth of entrained air filament under converging and asymmetric rotational fields
,”
Phys. Fluids
29
,
022101
(
2017
).
13.
E.
Lorenceau
,
D.
Quere
, and
J.
Eggers
, “
Air entrainment by a viscous jet plunging into a bath
,”
Phys. Rev. Lett.
93
,
254501
(
2004
).
14.
K. T.
Kiger
and
J. H.
Duncan
, “
Air-entrainment mechanisms in plunging jets and breaking waves
,”
Annu. Rev. Fluid Mech.
44
,
563
(
2012
).
15.
J.
Eggers
, “
Air entrainment through free-surface cusps
,”
Phys. Rev. Lett.
86
,
4290
(
2001
).
16.
S.
Popinet
, “
An accurate adaptive solver for surface-tension-driven interfacial flows
,”
J. Comput. Phys.
228
(
16
),
5838
(
2009
).
17.
E.
Lorenceau
,
F.
Restagno
, and
D.
Quere
, “
Fracture of a viscous liquid
,”
Phys. Rev. Lett.
90
,
184501
(
2003
).
18.
J.
Fernandez
,
R.
Krechetnikov
, and
G. M.
Homsy
, “
Experimental study of a surfactant-driven fingering phenomenon in a Hele-Shaw cell
,”
J. Fluid Mech.
527
,
197
(
2005
).
19.
A. A.
Castrejon-Pita
,
J.
Castrejon-Pita
, and
I.
Hutchings
, “
Breakup of liquid filaments
,”
Phys. Rev. Lett.
108
,
074506
(
2012
).
20.
P. K.
Notz
and
O. A.
Basaran
, “
Dynamics and breakup of a contracting liquid filament
,”
J. Fluid Mech.
512
,
223
(
2004
).
21.
T.
Driessen
,
R.
Jeurissen
,
H.
Wijshoff
,
F.
Toschi
, and
D.
Lohse
, “
Stability of viscous long liquid filaments
,”
Phys. Fluids
25
,
062109
(
2013
).
22.
J.
Eggers
and
E.
Villermaux
, “
Physics of liquid jets
,”
Rep. Prog. Phys.
71
(
3
),
036601
(
2008
).
23.
S.
Betelú
,
R.
Gratton
, and
J.
Diez
, “
Observation of cusps during the levelling of free surfaces in viscous flows
,”
J. Fluid Mech.
377
,
137
(
1998
).
24.
P.
Kumar
,
A. K.
Das
, and
S. K.
Mitra
, “
Physical understanding of gas-liquid annular flow and its transition to dispersed droplets
,”
Phys. Fluids
28
,
072101
(
2016
).
You do not currently have access to this content.