A rectangular grid formed by liquid filaments on a partially wetting substrate evolves in a series of breakups leading to arrays of drops with different shapes distributed in a rather regular bidimensional pattern. Our study is focused on the configuration produced when two long parallel filaments of silicone oil, which are placed upon a glass substrate previously coated with a fluorinated solution, are crossed perpendicularly by another pair of long parallel filaments. A remarkable feature of this kind of grids is that there are two qualitatively different types of drops. While one set is formed at the crossing points, the rest are consequence of the breakup of shorter filaments formed between the crossings. Here, we analyze the main geometric features of all types of drops, such as shape of the footprint and contact angle distribution along the drop periphery. The formation of a series of short filaments with similar geometric and physical properties allows us to have simultaneously quasi identical experiments to study the subsequent breakups. We develop a simple hydrodynamic model to predict the number of drops that results from a filament of given initial length and width. This model is able to yield the length intervals corresponding to a small number of drops, and its predictions are successfully compared with the experimental data as well as with numerical simulations of the full Navier–Stokes equation that provide a detailed time evolution of the dewetting motion of the filament till the breakup into drops. Finally, the prediction for finite filaments is contrasted with the existing theories for infinite ones.

1.
G. R.
Fleming
and
M. A.
Ratner
, “
Grand challenges in basic energy sciences
,”
Phys. Today
61
(
7
),
28
(
2008
).
2.
P.
Beltrame
,
E.
Knobloch
,
P.
Hänggi
, and
U.
Thiele
, “
Rayleigh and depinning instabilities of forced liquid ridges on heterogeneous substrates
,”
Phys. Rev. E
83
,
016305
(
2011
).
3.
D.
Quéré
, “
Wetting and roughness
,”
Annu. Rev. Fluid Mech.
38
,
71
(
2008
).
4.
J. H.
Snoeijer
and
B.
Andreotti
, “
Moving contact lines: Scales, regimes, and dynamical transitions
,”
Annu. Rev. Fluid Mech.
45
,
269
(
2013
).
5.
A. G.
González
,
J.
Diez
,
R.
Gratton
, and
J.
Gomba
, “
Rupture of a fluid strip under partial wetting conditions
,”
Europhys. Lett.
77
,
44001
(
2007
).
6.
S. J.
Henley
,
J. D.
Carey
, and
S. R. P.
Silva
, “
Metal nanoparticle production by pulsed laser nanostructuring of thin metal films
,”
Appl. Surf. Sci.
253
,
8080
(
2007
).
7.
S.
Fan
,
M.
Chapline
,
N.
Franklin
,
T.
Tombler
,
A.
Cassell
, and
H.
Dai
, “
Self-oriented regular arrays of carbon nanotubes and their field emission properties
,”
Science
283
,
512
(
1999
).
8.
S. A.
Maier
,
P. G.
Kik
,
H. A.
Atwater
,
S.
Meltzer
,
E.
Harel
,
B. E.
Koel
, and
A. A.
Requicha
, “
Local detection of electromagnetic energy transport below the difraction limit in metal nanoparticle plasmon waveguide
,”
Nat. Mater.
2
,
229
(
2003
).
9.
S.
Sun
,
C.
Murray
,
D.
Weller
,
L.
Folks
, and
A.
Moser
, “
Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices
,”
Science
287
,
1989
(
2000
).
10.
Plasmonics: Fundamentals and Applications
, edited by
S.
Maier
(
Springer–Verlag
,
New York
,
2007
).
11.
S.
Baderi
, “
Colloquium: Opportunities in nanomagnetism
,”
Rev. Mod. Phys.
78
,
1
(
2006
).
12.
Y.
Min
,
M.
Akbulut
,
K.
Kristiansen
,
Y.
Golan
, and
J.
Israelachvili
, “
The role of interparticle and external forces in nanoparticle assembly
,”
Nat. Mater.
7
,
527
(
2008
).
13.
J. D.
Fowlkes
,
N. A.
Roberts
,
Y.
Wu
,
J. A.
Diez
,
A. G.
González
,
C.
Hartnett
,
K.
Mahady
,
S.
Afkhami
,
L.
Kondic
, and
P. D.
Rack
, “
Hierarchical nanoparticle ensembles synthesized by liquid phase directed self-assembly
,”
Nano Lett.
14
,
774
782
(
2014
).
14.
R. V.
Craster
and
O. K.
Matar
, “
Dynamics and stability of thin liquid films
,”
Rev. Mod. Phys.
81
,
1131
1198
(
2009
).
15.
A.
Oron
,
S. H.
Davis
, and
S. G.
Bankoff
, “
Long-scale evolution of thin liquid films
,”
Rev. Mod. Phys.
69
,
931
980
(
1997
).
16.
C. A.
Hartnett
,
K.
Mahady
,
J. D.
Fowlkes
,
S.
Afkhami
,
L.
Kondic
, and
P. D.
Rack
, “
Instability of nano- and microscale liquid metal filaments: Transition from single droplet collapse to multidroplet breakup
,”
Langmuir
31
,
13609
(
2015
).
17.
J. A.
Diez
and
A. G.
González
, “
Breakup of thin liquid filaments on partially wetting substrates: From micrometric to nanometric scales
,”
Braz. J. Phys.
46
,
225
237
(
2016
).
18.
J. D.
Fowlkes
,
L.
Kondic
,
J.
Diez
, and
P. D.
Rack
, “
Self-assembly versus directed assembly of nanoparticles via pulsed laser induced dewetting of patterned metal films
,”
Nano Lett.
11
,
2478
(
2011
).
19.
A. A.
Castrejón-Pita
,
J. R.
Castrejón-Pita
, and
I. M.
Hutchings
, “
Breakup of liquid filaments
,”
Phys. Rev. Lett.
108
,
074506
(
2012
).
20.
N.
Moallemi
,
R.
Li
, and
K.
Mehravaran
, “
Breakup of capillary jets with different disturbances
,”
Phys. Fluids
28
,
012101
(
2016
).
21.
T.
Driessen
,
R.
Jeurissen
,
H.
Wijshoff
,
F.
Toschi
, and
D.
Lohse
, “
Stability of viscous long liquid filaments
,”
Phys. Fluids
25
,
062109
(
2013
).
22.
L.
Kondic
,
J.
Diez
,
P.
Rack
,
Y.
Guan
, and
J.
Fowlkes
, “
Nanoparticle assembly via the dewetting of patterned thin metal lines: Understanding the instability mechanism
,”
Phys. Rev. E
79
,
026302
(
2009
).
23.
G.
Ghigliotti
,
C.
Zhou
, and
J. J.
Feng
, “
Simulations of the breakup of liquid filaments on a partially wetting solid substrate
,”
Phys. Fluids
25
,
072102
(
2013
).
24.
P. D.
Ravazzoli
,
I.
Cuellar
,
A. G.
González
, and
J. A.
Diez
, “
Wetting and dewetting processes in the axial retraction of liquid filaments
,”
Phys. Rev. E
95
,
053111
(
2017
).
25.
P. D.
Ravazzoli
,
A. G.
González
, and
J. A.
Diez
, “
Drops with non-circular footprints
,”
Phys. Fluids
28
,
042104
(
2016
).
26.
F.
Brochard-Wyart
and
C.
Redon
, “
Dynamics of liquid rim instabilities
,”
Langmuir
8
,
2324
(
1992
).
27.
K.
Sekimoto
,
R.
Oguma
, and
K.
Kawasaki
, “
Morphological stability analysis of partial wetting
,”
Ann. Phys.
176
,
359
(
1987
).
28.
J.
Diez
,
A. G.
González
, and
L.
Kondic
, “
Instability of a transverse liquid rivulet on an inclined plane
,”
Phys. Fluids
24
,
032104
(
2012
).
29.
T. J. R.
Hughes
,
W. K.
Liuand
, and
T. K.
Zimmermann
, “
Lagrangian-Eulerian finite element formulation for incompressible viscous flows
,”
Comput. Methods Appl. Mech. Eng.
29
,
329
349
(
1981
).
30.
J.
Donea
,
S.
Giuliani
, and
J. P.
Halleux
, “
An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions
,”
Comput. Methods Appl. Mech. Eng.
33
,
689
723
(
1982
).
31.
K. N.
Christodoulou
and
L. E.
Scriven
, “
Discretization of free surface flows and other moving boundary problems
,”
Comput. Methods Appl. Mech. Eng.
99
,
39
55
(
1992
).
32.
C. W.
Hirt
,
A. A.
Amsden
, and
J. L.
Cook
, “
An arbitrary Lagrangian-Eulerian computing method for all flow speed
,”
Comput. Methods Appl. Mech. Eng.
135
,
203
216
(
1997
).
33.
A. M.
Winslow
, “
Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh
,”
J. Comput. Phys.
1
,
149
172
(
1966
).
34.
P. M.
Knupp
, “
Winslow smoothing on two-dimensional unstructured meshes
,”
Eng. Comput.
15
,
263
268
(
1999
).
35.
T. E.
Tezduyar
, “
Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces
,”
Comput. Methods Appl. Mech. Eng.
195
,
2983
3000
(
2006
).
36.
K.
Mahady
,
S.
Afkhami
, and
L.
Kondic
, “
A volume of fluid method for simulating fluid/fluid interfaces in contact with solid boundaries
,”
J. Comput. Phys.
294
,
243
257
(
2015
).
37.
S.
Afkhami
,
S.
Zaleski
, and
M.
Bussmann
, “
A mesh-dependent model for applying dynamic contact angles to VOF simulations
,”
J. Comput. Phys.
228
,
5370
5389
(
2009
).
38.
J.-B.
Dupont
and
D.
Legendre
, “
Numerical simulation of static and sliding drop with contact angle hysteresis
,”
J. Comput. Phys.
229
,
2453
2478
(
2010
).
39.
J. K.
Park
and
K. H.
Kanga
, “
Numerical analysis of moving contact line with contact angle hysteresis using feedback deceleration technique
,”
Phys. Fluids
24
,
042105
(
2012
).
You do not currently have access to this content.