We consider small oscillations of micro-particles and gaseous bubbles in a viscous fluid around equilibrium states under the action of a sinusoidal external force. Exact solutions to the governing integro-differential equations containing both Stokes and memory-integral drag forces are obtained. The main aim of this study is to clarify the influence of the memory-integral drag force on the resonance characteristics of oscillating particles or gaseous bubbles in a viscous fluid at small Reynolds numbers. The resonant curves (the amplitude versus the frequency of an external force) and phase-frequency dependences are obtained for both these objects and compared with the corresponding dependences of the traditional oscillator with the Stokes drag force only.

1.
P. M.
Lovalenti
and
J. F.
Brady
, “
The force on a bubble, drop, or particle in arbitrary time-dependent motion at small Reynolds number
,”
Phys. Fluids A
5
,
2104
2116
(
1993
).
2.
F.
Candelier
,
J. R.
Angilella
, and
M.
Souhar
, “
On the effect of the Boussinesq-Basset force on the radial migration of Stokes particle in a vortex
,”
Phys. Fluids
16
,
1765
1776
(
2004
).
3.
F.
Candelier
,
J. R.
Angilella
, and
M.
Souhar
, “
On the effect of inertia and history forces on the slow motion of a spherical solid or gaseous inclusion in a solid-body rotation flow
,”
J. Fluid Mech.
545
,
113
139
(
2005
).
4.
M. H.
Kobayashi
and
C. F. M.
Coimbra
, “
On the stability of the Maxey-Riley equation in nonuniform linear flows
,”
Phys. Fluids
17
,
113301
(
2005
).
5.
Y. A.
Stepanyants
and
G. H.
Yeoh
, “
Particle and bubble dynamics in a creeping flow
,”
Eur. J. Mech. - B/Fluids
28
,
619
629
(
2009
).
6.
Ye. V.
Visitskii
,
A. G.
Petrov
, and
M. M.
Shunderyuk
, “
The motion of a particle in a viscous fluid under gravity, vibration and Basset’s force
,”
J. Appl. Math. Mech.
73
,
548
557
(
2009
).
7.
A. V.
Aksenov
,
A. G.
Petrov
, and
M. M.
Shunderyuk
, “
The motion of solid particle in a fluid in a nonlinear ultrasonic standing wave
,”
Doklady Phys.
56
(
7
),
379
384
(
2011
).
8.
J. H.
Xie
and
J.
Vanneste
, “
Dynamics of a spherical particle in an acoustic fields: A multiscale approach
,”
Phys. Fluid
26
,
102001
(
2014
).
9.
H. K.
Hassan
,
L. A.
Ostrovsky
, and
Y. A.
Stepanyants
, “
Particle dynamics in a viscous fluid under the action of acoustic radiation force
,”
Discontinuity, Nonlinearity, Complexity
6
(
3
),
317
(
2017
).
10.
L. A.
Ostrovsky
and
Y. A.
Stepanyants
, “
Dynamics of particles and bubblers under the action of acoustic radiation force
,” in
Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives
, edited by
M.
Edelman
,
M.
Elbert
, and
M. A. F.
Sanjuan
(
Springer
,
2017
).
11.
W. McC.
Siebert
,
Circuits, Signals, and Systems
(
MIT Press
,
1986
).
12.
D.
Klepper
and
R.
Kolenkow
,
An Introduction to Mechanics
(
Cambridge University Press
,
2014
).
13.
Y. A.
Stepanyants
, and
G. H.
Yeoh
, “
Nanoparticle dynamics in a viscous fluid at small Reynolds numbers
,” in
Proceedings of the 6th Australasian Congress on Applied Mechanics
(
ACAM
,
Perth, Australia
,
2010
), Vol. 6, pp.
12
15
.
14.
L. D.
Landau
, and
E. M.
Lifshitz
,
Hydrodynamics
, 4th ed. (
Nauka
,
Moscow
,
1988
) [
Fluid Mechanics
(
Pergamon Press
,
Oxford
,
1993
)].
15.
E. W.
Weisstein
, in
CRC Concise Encyclopedia of Mathematics
, 2nd ed. (
Chapman & Hall/CRC
,
Boca Raton
,
2003
), see also http://functions.wolfram.com/.
You do not currently have access to this content.