Direct numerical simulations of the flow field around a NACA 0012 airfoil at Reynolds number 50 000 and angle of attack 5° with 3 different trailing edge shapes (straight, blunt, and serrated) have been performed. Both time-averaged flow characteristics and the most dominant flow structures and their frequencies are investigated using the dynamic mode decomposition method. It is shown that for the straight trailing edge airfoil, this method can capture the fundamental as well as the subharmonic of the Kelvin-Helmholtz instability that develops naturally in the separating shear layer. The fundamental frequency matches well with relevant data in the literature. The blunt trailing edge results in periodic vortex shedding, with frequency close to the subharmonic of the natural shear layer frequency. The shedding, resulting from a global instability, has an upstream effect and forces the separating shear layer. Due to forcing, the shear layer frequency locks onto the shedding frequency while the natural frequency (and its subharmonic) is suppressed. The presence of serrations in the trailing edge creates a spanwise pressure gradient, which is responsible for the development of a secondary flow pattern in the spanwise direction. This pattern affects the mean flow in the near wake. It can explain an unexpected observation, namely, that the velocity deficit downstream of a trough is smaller than the deficit after a protrusion. Furthermore, the insertion of serrations attenuates the energy of vortex shedding by de-correlating the spanwise coherence of the vortices. This results in weaker forcing of the separating shear layer, and both the subharmonics of the natural frequency and the shedding frequency appear in the spectra.

1.
H.
Smith
and
R.
Schaefer
, NACA Technical Note TN 2074, NACA,
1950
.
2.
K.
Standish
and
C.
van Dam
, “
Aerodynamic analysis of blunt trailing edge airfoils
,”
J. Sol. Energy Eng.
125
,
479
(
2003
).
3.
J.
Baker
,
E.
Mayda
, and
C.
van Dam
, “
Experimental analysis of thick blunt trailing-edge wind turbine airfoils
,”
J. Sol. Energy Eng.
128
,
422
(
2006
).
4.
H.
Xu
,
W.
Shen
,
W.
Zhu
,
H.
Yang
, and
C.
Liu
, “
Aerodynamic analysis of trailing edge enlarged wind turbine airfoils
,”
J. Phys.: Conf. Ser.
524
(
1
),
012010
(
2014
).
5.
R.
Chow
and
C.
van Dam
, “
Computational investigations of blunt trailing-edge and twist modifications to the inboard region of the NREL 5MW rotor
,”
Wind Energy
16
,
445
(
2013
).
6.
M.
Tanner
, Technical Report AD0752171, DTIC Document,
1970
.
7.
S.
Gai
and
S.
Sharma
, “
Experiments on the reduction of base drag of a blunt trailing edge aerofoil in subsonic flow
,”
Aeronaut. J.
85
(
844
),
206
(
1981
).
8.
O.
Rodriguez
, “
Base drag reduction by control of the three-dimensional unsteady vortical structures
,”
Exp. Fluids
11
,
218
(
1991
).
9.
D.
Krentel
and
W.
Nitsche
, “
Investigation of the near and far wake of a bluff airfoil model with trailing edge modifications using time-resolved particle image velocimetry
,”
Exp. Fluids
54
,
1
(
2013
).
10.
J.
Nedić
and
J. C.
Vassilicos
, “
Vortex shedding and aerodynamic performance of airfoil with multiscale trailing-edge modifications
,”
AIAA J.
53
,
3240
(
2015
).
11.
N.
Tombazis
, Ph.D. thesis,
University of London Library
,
1993
.
12.
P. W.
Bearman
and
N.
Tombazis
, “
The effects of three-dimensional imposed disturbances on bluff body near wake flows
,”
J. Wind Eng. Ind. Aerodyn.
49
,
339
(
1993
).
13.
N.
Tombazis
and
P.
Bearman
, “
A study of three-dimensional aspects of vortex shedding from a bluff body with mild geometric disturbance
,”
J. Fluid Mech.
330
,
85O112
(
1997
).
14.
J.
Cai
,
T. L.
Chng
, and
H. M.
Tsai
, “
On vortical flows shedding from a bluff body with a wavy trailing edge
,”
Phys. Fluids
20
,
064102
(
2008
).
15.
P.
Lissaman
, “
Low-Reynolds-number airfoils
,”
Annu. Rev. Fluid Mech.
15
,
223
(
1983
).
16.
R.
Kotapati
,
R.
Mittal
,
O.
Marxen
,
F.
Ham
,
D.
You
, and
L. N.
Cattafesta
, “
Nonlinear dynamics and synthetic-jet-based control of a canonical separated flow
,”
J. Fluid Mech.
654
,
65
(
2010
).
17.
M.
Alam
and
N. D.
Sandham
, “
Direct number simulation of short laminar separation bubbles with turbulent reattachment
,”
J. Fluid Mech.
403
,
223
(
2000
).
18.
O.
Marxen
and
U.
Rist
, “
Mean flow deformation in a laminar separation bubble: separation and stability characteristics
,”
J. Fluid Mech.
660
,
37
(
2010
).
19.
U.
Rist
and
K.
Augustin
, “
Control of laminar separation bubbles using instability waves
,”
AIAA J.
44
,
2217
(
2006
).
20.
O.
Marxen
,
M.
Lang
, and
U.
Rist
, “
Vortex formation and vortex breakup in a laminar separation bubble
,”
J. Fluid Mech.
728
,
58
(
2013
).
21.
O.
Marxen
and
D.
Henningson
, “
The effect of small-amplitude convective disturbances on the size and bursting of a laminar separation bubble
,”
J. Fluid Mech.
671
,
1
(
2011
).
22.
D.
Postl
,
W.
Balzer
, and
H.
Fasel
, “
Control of laminar separation using pulsed vortex generator jets: Direct numerical simulations
,”
J. Fluid Mech.
676
,
81
(
2011
).
23.
P.
Spalart
and
K.
Strelets
, “
Mechanisms of transition and heat transfer in a separation bubble
,”
J. Fluid Mech.
403
,
329
(
2000
).
24.
H.
Shan
,
L.
Jiang
, and
C.
Liu
, “
Direct numerical simulation of flow separation around a NACA 0012 airfoil
,”
Comput. Fluids
34
,
1096
(
2005
).
25.
L.
Jones
,
R.
Sandberg
, and
N.
Sandham
, “
Direct numerical simulations of forces and unforced separation bubbles on an airfoil at incidence
,”
J. Fluid Mech.
602
,
175
(
2008
).
26.
O.
Lehmkuhl
,
I.
Rodríguez
,
A.
Baez
,
A.
Oliva
, and
C.
Pérez-Segarra
, “
On the large-eddy simulations for the flow around aerodynamic profiles using unstructured grids
,”
Comput. Fluids
84
,
176
(
2013
).
27.
S.
Hosseini
,
R.
Vinuesa
,
P.
Schlatter
,
A.
Hanifi
, and
D.
Henningson
, in
15th European Turbulence Conference
,
2015
.
28.
L.
Jones
and
R.
Sandberg
, “
Acoustic and hydrodynamic analysis of the flow around an aerofoil with trailing-edge serrations
,”
J. Fluid Mech.
706
,
295
(
2012
).
29.
R.
Sandberg
and
L.
Jones
, “
Direct numerical simulations of low Reynolds number flow over airfoils with trailing-edge serrations
,”
J. Sound Vibration
330
,
3818
(
2011
).
30.
R. I.
Issa
, “
Solution of the implicitly discretized fluid flow equations by operator-splitting
,”
J. Comput. Phys.
62
,
40
(
1986
).
31.
S.
Balay
,
S.
Abhyankar
,
M.
Adams
,
J.
Brown
,
P.
Brune
,
K.
Buschelman
,
V.
Eijkhout
,
W.
Gropp
,
D.
Kaushik
,
M.
Knepley
 et al, Technical Report ANL-95/11 Revision 3.5,
Argonne National Laboratory (ANL)
,
2014
.
32.
R. D.
Falgout
,
J. E.
Jones
, and
U. M.
Yang
, “
The design and implementation of hypre, a library of parallel high performance preconditioners
,” in
Numerical Solution of Partial Differential Equations on Parallel Computers
(
Springer
,
2006
), pp.
267
294
.
33.
W.
Zhang
and
R.
Samtaney
, “
A direct numerical simulation investigation of the synthetic jet frequency effects on separation control of low-Re flow past an airfoil
,”
Phys. Fluids
27
,
055101
(
2015
).
34.
C.
Williamson
, “
Vortex dynamics in the cylinder wake
,”
Annu. Rev. Fluid Mech.
28
,
477
(
1996
).
35.
P.
Moin
and
K.
Mahesh
, “
Direct numerical simulation: A tool in turbulence research
,”
Annu. Rev. Fluid Mech.
30
,
539
(
1998
).
36.
D.
Donzis
,
P.
Yeung
, and
K.
Sreenivasan
, “
Dissipation and enstrophy in isotropic turbulence: Resolution effects and scaling in direct numerical simulations
,”
Phys. Fluids
20
,
045108
(
2008
).
37.
W.
Zhang
and
R.
Samtaney
, “
Assessment of spanwise domain size effect on the transitional flow past an airfoil
,”
Comput. Fluids
124
,
39
(
2016
).
38.
M.
O’Meara
and
T.
Mueller
, “
Laminar separation bubble characteristics on an airfoil at low Reynolds numbers
,”
AIAA J.
25
,
1033
(
1987
).
39.
M.
Boutilier
and
S.
Yarusevych
, “
Separated shear layer transition over an airfoil at a low Reynolds number
,”
Phys. Fluids
24
,
084105
(
2012
).
40.
S.
Yarusevych
,
P.
Sullivan
, and
J.
Kawall
, “
Coherent structures in an airfoil boundary layer and wake at low Reynolds numbers
,”
Phys. Fluids
18
,
044101
(
2006
).
41.
H.
Horton
, Ph.D. thesis,
Queen Mary, University of London
,
1968
.
42.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
(
1995
).
43.
G.
Berkooz
,
P.
Holmes
, and
J. L.
Lumley
, “
The proper orthogonal decomposition in the analysis of turbulent flows
,”
Annu. Rev. Fluid Mech.
25
,
539
(
1993
).
44.
P. J.
Schmid
,
L.
Li
,
M.
Juniper
, and
O.
Pust
, “
Applications of the dynamic mode decomposition
,”
Theor. Comput. Fluid Dyn.
25
,
249
(
2011
).
45.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
(
2010
).
46.
Z.-H.
Wan
,
L.
Zhou
,
B.-F.
Wang
, and
D.-J.
Sun
, “
Dynamic mode decomposition of forced spatially developed transitional jets
,”
Eur. J. Mech. B/Fluids
51
,
16
(
2015
).
47.
P.
Baj
,
P. J.
Bruce
, and
O. R.
Buxton
, “
The triple decomposition of a fluctuating velocity field in multiscale flow
,”
Phys. Fluids
27
,
075104
(
2015
).
48.
R.
Dunne
and
B. J.
McKeon
, “
Dynamic stall on a pitching and surging airfoil
,”
Exp. Fluids
56
,
1
(
2015
).
49.
S.
Mariappan
,
A.
Gardner
,
K.
Richter
, and
M.
Raffel
, “
Analysis of dynamic stall using dynamic mode decomposition technique
,”
AIAA J.
52
,
2427
(
2014
).
50.
M. R.
Jovanović
,
P. J.
Schmid
, and
J. W.
Nichols
, “
Sparsity-promoting dynamic mode decomposition
,”
Phys. Fluids
26
,
024103
(
2014
).
51.
S.
Bagheri
, “
Computational hydrodynamic stability and flow control based on spectral analysis of linear operators
,”
Arch. Comput. Methods Eng.
19
,
341
(
2012
).
52.
S.
Yarusevych
,
P. E.
Sullivan
, and
J. G.
Kawall
, “
On vortex shedding from an airfoil in low-Reynolds-number flows
,”
J. Fluid Mech.
632
,
245
(
2009
).
53.
C.-M.
Ho
and
P.
Huerre
, “
Perturbed free shear layers
,”
Annu. Rev. Fluid Mech.
16
,
365
(
1984
).
54.
A.
Dovgal
,
V.
Kozlov
, and
A.
Michalke
, “
Laminar boundary layer separation: Instability and associated phenomena
,”
Prog. Aerosp. Sci.
30
,
61
(
1994
).
55.
L. E.
Jones
, Ph.D. thesis,
University of Southampton
,
2008
.
56.
L.-S.
Huang
and
C.-M.
Ho
, “
Small scale transition in a plane mixing layer
,”
J. Fluid Mech.
210
,
475
(
1990
).
57.
M.
Drela
and
H.
Youngren
,
Xfoil 6.94 User Guide
(
MIT Aero & Astro
,
2001
).
58.
X.
Chen
and
R.
Agarwal
, “
Optimization of flatback airfoils for wind-turbine blades using a genetic algorithm
,”
J. Aircr.
49
,
622
(
2012
).
59.
D.
Greenblatt
and
I.
Wygnanski
, “
The control of flow separation by periodic excitation
,”
Prog. Aerosp. Sci.
36
,
487
(
2000
).
60.
C.-M.
Ho
and
L.-S.
Huang
, “
Subharmonics and vortex merging in mixing layers
,”
J. Fluid Mech.
119
,
443
(
1982
).
61.
S. L.
Prigent
,
O.
Buxton
, and
P. J.
Bruce
, in
54th AIAA Aerospace Sciences Meeting, San Diego
(
AIAA
,
2016
), p.
0852
.
You do not currently have access to this content.