The normal impinging of nanoscale water droplets on the solid surface is investigated through molecular dynamics simulations. A wide regime of impinging from spreading to breakup is studied. The overestimations of dissipation and surface free energy in literature are modified with a more accurate assumption on flow fields. The refined model fits well with the simulation results by introducing the linear distribution of radial velocity gradient. Two modes of breakup are observed during the nanodroplet impinging on the surface: (1) touch-bottom of the surface of the liquid film and (2) propagation of finger-like projections on the flow frontier. The touch-bottom breakup is possibly the dominant mode in cases with large We and small Re. The criterion is proposed to be that the amplitude of the capillary wave is larger than the average height of the droplets at the maximum spreading state. This criterion gives a well prediction comparing to the results obtained in molecular dynamics simulations.

1.
R. A.
Caruso
and
M.
Antonietti
, “
Sol-gel nanocoating: An approach to the preparation of structured materials
,”
Chem. Mater.
13
,
3272
3282
(
2001
).
2.
P.
Galliker
,
J.
Schneider
,
H.
Eghlidi
,
S.
Kress
,
V.
Sandoghdar
, and
D.
Poulikakos
, “
Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets
,”
Nat. Commun.
3
,
890
(
2012
).
3.
C.
Mundo
,
M.
Sommerfeld
, and
C.
Tropea
, “
Droplet-wall collisions: Experimental studies of the deformation and breakup process
,”
Int. J. Multiphase Flow
21
,
151
173
(
1995
).
4.
M.
Trujillo
,
W.
Mathews
,
C.
Lee
, and
J.
Peters
, “
Modelling and experiment of impingement and atomization of a liquid spray on a wall
,”
Int. J. Engine Res.
1
,
87
105
(
2000
).
5.
W.
Zhou
,
D.
Loney
,
F. L.
Degertekin
,
D. W.
Rosen
, and
A. G.
Fedorov
, “
What controls dynamics of droplet shape evolution upon impingement on a solid surface?
,”
AIChE J.
59
,
3071
3082
(
2013
).
6.
R. F.
Allen
, “
The role of surface tension in splashing
,”
J. Colloid Interface Sci.
51
,
350
351
(
1975
).
7.
H.-Y.
Kim
,
Z.
Feng
, and
J.-H.
Chun
, “
Instability of a liquid jet emerging from a droplet upon collision with a solid surface
,”
Phys. Fluids
12
,
531
541
(
2000
).
8.
N. Z.
Mehdizadeh
,
S.
Chandra
, and
J.
Mostaghimi
, “
Formation of fingers around the edges of a drop hitting a metal plate with high velocity
,”
J. Fluid Mech.
510
,
353
373
(
2004
).
9.
R.
Dhiman
and
S.
Chandra
, paper presented at the
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2009
.
10.
J.
Padday
, “
Cohesive properties of thin films of liquids adhering to a solid surface
,”
Spec. Discuss. Faraday Soc.
1
,
64
74
(
1970
).
11.
A. N.
Lembach
,
H.-B.
Tan
,
I. V.
Roisman
,
T.
Gambaryan-Roisman
,
Y.
Zhang
,
C.
Tropea
, and
A. L.
Yarin
, “
Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats
,”
Langmuir
26
,
9516
9523
(
2010
).
12.
J.
Fukai
,
Y.
Shiiba
,
T.
Yamamoto
,
O.
Miyatake
,
D.
Poulikakos
,
C.
Megaridis
, and
Z.
Zhao
, “
Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiment and modeling
,”
Phys. Fluids
7
,
236
247
(
1995
).
13.
C.
Ukiwe
and
D. Y.
Kwok
, “
On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces
,”
Langmuir
21
,
666
673
(
2005
).
14.
M.
Pasandideh-Fard
,
Y.
Qiao
,
S.
Chandra
, and
J.
Mostaghimi
, “
Capillary effects during droplet impact on a solid surface
,”
Phys. Fluids
8
,
650
659
(
1996
).
15.
I. V.
Roisman
,
R.
Rioboo
, and
C.
Tropea
, paper presented at the
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2002
.
16.
D. T.
Papageorgiou
, “
On the breakup of viscous liquid threads
,”
Phys. Fluids
7
,
1529
1544
(
1995
).
17.
H. A.
Stone
, “
Dynamics of drop deformation and breakup in viscous fluids
,”
Annu. Rev. Fluid Mech.
26
,
65
102
(
1994
).
18.
C.
Mundo
,
C.
Tropea
, and
M.
Sommerfeld
, “
Numerical and experimental investigation of spray characteristics in the vicinity of a rigid wall
,”
Exp. Therm. Fluid Sci.
15
,
228
237
(
1997
).
19.
M.
Orme
, “
Experiments on droplet collisions, bounce, coalescence and disruption
,”
Prog. Energy Combust. Sci.
23
,
65
79
(
1997
).
20.
H.
Fujimoto
,
Y.
Shiotani
,
A. Y.
Tong
,
T.
Hama
, and
H.
Takuda
, “
Three-dimensional numerical analysis of the deformation behavior of droplets impinging onto a solid substrate
,”
Int. J. Multiphase Flow
33
,
317
332
(
2007
).
21.
S.
Tan
, “
A tentative mass loss model for simulating water droplet splash
,” AIAA Paper 2004-410,
2004
.
22.
J.
Madejski
, “
Solidification of droplets on a cold surface
,”
Int. J. Heat Mass Transfer
19
,
1009
1013
(
1976
).
23.
S.
Chandra
and
C.
Avedisian
, paper presented at the
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1991
.
24.
J.
Koplik
and
R.
Zhang
, “
Nanodrop impact on solid surfaces
,”
Phys. Fluids
25
,
022003
(
2013
).
25.
X.-H.
Li
,
X.-X.
Zhang
, and
M.
Chen
, “
Estimation of viscous dissipation in nanodroplet impact and spreading
,”
Phys. Fluids
27
,
052007
(
2015
).
26.
G.
Taura
and
M.
Matsumoto
, “
Molecular dynamics simulation of microdroplet impingement on solid surface
,”
J. Fluid Sci. Technol.
5
,
207
218
(
2010
).
27.
B.
Derby
, “
Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution
,”
Annu. Rev. Mater. Res.
40
,
395
414
(
2010
).
28.
S.
Thoroddsen
and
J.
Sakakibara
, “
Evolution of the fingering pattern of an impacting drop
,”
Phys. Fluids
10
,
1359
1374
(
1998
).
29.
V.
Molinero
and
E. B.
Moore
, “
Water modeled as an intermediate element between carbon and silicon
,”
J. Phys. Chem. B
113
,
4008
4016
(
2008
).
30.
L. C.
Jacobson
,
R. M.
Kirby
, and
V.
Molinero
, “
How short is too short for the interactions of a water potential? Exploring the parameter space of a coarse-grained water model using uncertainty quantification
,”
J. Phys. Chem. B
118
,
8190
8202
(
2014
).
31.
J.
Sengers
and
J. T. R.
Watson
,
Improved International Formulations for the Viscosity and Thermal Conductivity of Water Substance
(
American Chemical Society and the American Institute of Physics for the National Bureau of Standards
,
1986
).
You do not currently have access to this content.