We study numerically the propulsive wakes produced by a flapping foil. Both pure pitching and pure heaving motions are considered, respectively, at a fixed Reynolds number of Re = 1700. As the major innovation of this paper, we find an interesting coincidence that the efficiency maximum agrees well with the 2D-3D transition boundary, by plotting the contours of propulsive efficiency in the frequency-amplitude parametric space and comparing to the transition boundaries. Although there is a lack of direct 3D simulations, it is reasonable to conjecture that the propulsive efficiency increases with Strouhal number until the wake transits from a 2D state to a 3D state. By comparing between the pure pitching motion and the pure heaving motion, we find that the 2D-3D transition occurs earlier for the pure heaving foil than that of the pure pitching foil. Consequently, the efficiency for the pure heaving foil peaks more closely to the wake deflection boundary than that of the pure pitching foil. Furthermore, since we have drawn the maps on the same parametric space with the same Reynolds number, it is possible to make a direct comparison in the propulsive efficiency between a pure pitching foil and a pure heaving foil. We note that the maximum efficiency for a pure pitching foil is 15.6%, and that of a pure heaving foil is 17%, indicating that the pure heaving foil has a slightly better propulsive performance than that of the pure pitching foil for the currently studied Reynolds number.

1.
M.
Triantafyllou
,
G.
Triantafyllou
, and
D.
Yue
, “
Hydrodynamics of fishlike swimming
,”
Annu. Rev. Fluid Mech.
32
,
33
53
(
2000
).
2.
S. P.
Sane
, “
The aerodynamics of insect flight
,”
J. Exp. Biol.
206
,
4191
4208
(
2003
).
3.
G. K.
Taylor
,
R. L.
Nudds
, and
A. L.
Thomas
, “
Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency
,”
Nature
425
,
707
711
(
2003
).
4.
J.
Anderson
,
K.
Streitlien
,
D.
Barrett
, and
M.
Triantafyllou
, “
Oscillating foils of high propulsive efficiency
,”
J. Fluid Mech.
360
,
41
72
(
1998
).
5.
D. A.
Read
,
F.
Hover
, and
M.
Triantafyllou
, “
Forces on oscillating foils for propulsion and maneuvering
,”
J. Fluids Struct.
17
,
163
183
(
2003
).
6.
L.
Schouveiler
,
F.
Hover
, and
M.
Triantafyllou
, “
Performance of flapping foil propulsion
,”
J. Fluids Struct.
20
,
949
959
(
2005
).
7.
M. F.
Platzer
,
K. D.
Jones
,
J.
Young
, and
J. S.
Lai
, “
Flapping wing aerodynamics: Progress and challenges
,”
AIAA J.
46
,
2136
2149
(
2008
).
8.
I.
Fenercioglu
and
O.
Cetiner
, “
Categorization of flow structures around a pitching and plunging airfoil
,”
J. Fluids Struct.
31
,
92
102
(
2012
).
9.
M. M.
Koochesfahani
, “
Vortical patterns in the wake of an oscillating airfoil
,”
AIAA J.
27
,
1200
1205
(
1989
).
10.
R.
Godoy-Diana
,
J.-L.
Aider
, and
J. E.
Wesfreid
, “
Transitions in the wake of a flapping foil
,”
Phys. Rev. E
77
,
016308
(
2008
).
11.
D. G.
Bohl
and
M. M.
Koochesfahani
, “
MTV measurements of the vortical field in the wake of an airfoil oscillating at high reduced frequency
,”
J. Fluid Mech.
620
,
63
88
(
2009
).
12.
J. H.
Buchholz
and
A. J.
Smits
, “
The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel
,”
J. Fluid Mech.
603
,
331
365
(
2008
).
13.
G.
Triantafyllou
,
M.
Triantafyllou
, and
M.
Grosenbaugh
, “
Optimal thrust development in oscillating foils with application to fish propulsion
,”
J. Fluid Struct.
7
,
205
224
(
1993
).
14.
P. A.
Dewey
,
B. M.
Boschitsch
,
K. W.
Moored
,
H. A.
Stone
, and
A. J.
Smits
, “
Scaling laws for the thrust production of flexible pitching panels
,”
J. Fluid Mech.
732
,
29
46
(
2013
).
15.
A.
Mackowski
and
C.
Williamson
, “
Direct measurement of thrust and efficiency of an airfoil undergoing pure pitching
,”
J. Fluid Mech.
765
,
524
543
(
2015
).
16.
Z.
Wang
, “
Vortex shedding and frequency selection in flapping flight
,”
J. Fluid Mech.
410
,
323
341
(
2000
).
17.
M.
Ashraf
,
J.
Young
, and
J. S.
Lai
, “
Oscillation frequency and amplitude effects on plunging airfoil propulsion and flow periodicity
,”
AIAA J.
50
,
2308
2324
(
2012
).
18.
S.
Heathcote
,
Z.
Wang
, and
I.
Gursul
, “
Effect of spanwise flexibility on flapping wing propulsion
,”
J. Fluids Struct.
24
,
183
199
(
2008
).
19.
G. C.
Lewin
and
H.
Haj-Hariri
, “
Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow
,”
J. Fluid Mech.
492
,
339
362
(
2003
).
20.
A.
Martín-Alcántara
,
R.
Fernandez-Feria
, and
E.
Sanmiguel-Rojas
, “
Vortex flow structures and interactions for the optimum thrust efficiency of a heaving airfoil at different mean angles of attack
,”
Phys. Fluids
27
,
073602
(
2015
).
21.
K.
Jones
,
C.
Dohring
, and
M.
Platzer
, “
Experimental and computational investigation of the Knoller-Betz effect
,”
AIAA J.
36
,
1240
1246
(
1998
).
22.
K. D.
von Ellenrieder
and
S.
Pothos
, “
PIV measurements of the asymmetric wake of a two dimensional heaving hydrofoil
,”
Exp. Fluids
44
,
733
745
(
2008
).
23.
R.
Godoy-Diana
,
C.
Marais
,
J.-L.
Aider
, and
J. E.
Wesfreid
, “
A model for the symmetry breaking of the reverse Bénard–von Kármán vortex street produced by a flapping foil
,”
J. Fluid Mech.
622
,
23
32
(
2009
).
24.
J.
Deng
and
C.
Caulfield
, “
Three-dimensional transition after wake deflection behind a flapping foil
,”
Phys. Rev. E
91
,
043017
(
2015
).
25.
J.
Deng
,
L.
Sun
, and
X.
Shao
, “
Dynamical features of the wake behind a pitching foil
,”
Phys. Rev. E
92
,
063013
(
2015
).
26.
H.
Jasak
,
A.
Jemcov
, and
Z.
Tukovic
, “
Openfoam: A C++ library for complex physics simulations
,” in
International Workshop on Coupled Methods in Numerical Dynamics
(
IUC Dubrovnik
,
Croatia
,
2007
), Vol.
1000
, pp.
1
20
.
27.
J. H.
Ferziger
and
M.
Perić
,
Computational Methods for Fluid Dynamics
(
Springer
,
Berlin
,
2002
), Vol.
3
.
28.
J.
Deng
,
C.
Caulfield
, and
X.
Shao
, “
Effect of aspect ratio on the energy extraction efficiency of three-dimensional flapping foils
,”
Phys. Fluids
26
,
043102
(
2014
).
29.
G.
Iooss
,
D. D.
Joseph
,
F.
Jehring
, and
P.
Halmos
,
Elementary Stability and Bifurcation Theory
(
Springer
,
1980
), Vol.
34
.
30.
P. J.
Schmid
and
D. S.
Henningson
,
Stability and Transition in Shear Flows
(
Springer
,
2001
), Vol.
142
.
31.
D.
Barkley
and
R. D.
Henderson
, “
Three-dimensional Floquet stability analysis of the wake of a circular cylinder
,”
J. Fluid Mech.
322
,
215
241
(
1996
).
32.
D.
Barkley
,
L. S.
Tuckerman
, and
M.
Golubitsky
, “
Bifurcation theory for three-dimensional flow in the wake of a circular cylinder
,”
Phys. Rev. E
61
,
5247
(
2000
).
33.
H. M.
Blackburn
and
J.
Lopez
, “
On three-dimensional quasiperiodic Floquet instabilities of two-dimensional bluff body wakes
,”
Phys. Fluids
15
,
L57
L60
(
2003
).
34.
J.
Robichaux
,
S.
Balachandar
, and
S.
Vanka
, “
Three-dimensional Floquet instability of the wake of square cylinder
,”
Phys. Fluids
11
,
560
578
(
1999
).
35.
D.
Richter
,
E. S.
Shaqfeh
, and
G.
Iaccarino
, “
Floquet stability analysis of viscoelastic flow over a cylinder
,”
J. Non-Newtonian Fluid Mech.
166
,
554
565
(
2011
).
36.
E.
Laitone
, “
Wind tunnel tests of wings at Reynolds numbers below 70 000
,”
Exp. Fluids
23
,
405
409
(
1997
).
37.
R. E.
Sheldahl
and
P. C.
Klimas
, “
Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines
,” Technical Report No. SAND-80-2114, Sandia National Labs, Albuquerque, NM, USA, 1981.
38.
R.
Ramamurti
and
W.
Sandberg
, “
Simulation of flow about flapping airfoils using finite element incompressible flow solver
,”
AIAA J.
39
,
253
260
(
2001
).
You do not currently have access to this content.