Numerical results of fluid flow over a rotationally oscillating circular cylinder with splitter plate are presented here. Different from the previous examinations with freely rotatable assembly, the fluid and structure interactions are treated as a coupled dynamic system by fully considering the structural inertia, stiffness, and damping. The hydrodynamic characteristics are examined in terms of reduced velocity Ur at a relatively low Reynolds number Re = 100 for different plate lengths of L/D = 0.5, 1.0, and 1.5, where Ur = U/(Dfn), Re = UD/υ and fn = (κ/J)0.5/2π with U the free stream velocity, D the diameter of the circular cylinder, υ the fluid kinematic viscosity, fn the natural frequency, J the inertial moment, κ the torsional stiffness, and L the plate length. Contrast to the freely rotating cylinder/plate body, that is, in the limit of κ → 0 or Ur →∞, remarkable rotary oscillation is observed at relatively low reduced velocities. For the typical case with L/D = 1.0, the maximum amplitude may reach five times that at the highest reduced velocity of Ur = 15.0 considered in this work. At the critical reduced velocity Ur = 4.2, notable hydrodynamic jumps are identified for the rotation amplitude, response frequency, mean drag coefficient, lift amplitude, and vortex shedding frequency. Moreover, the phase angle between the fluid moment and rotary oscillation abruptly changes from 0 to π at Ur = 6.5. Due to the combined effect of fluid moment, rotation response, and phase difference, the natural frequency of the rotating body varies in flow, leading to a wide regime of lock-in/synchronization (Ur ≥4.2, for L/D = 1.0). The phenomenon of rotation bifurcation, i.e., the equilibrium position of the rotary oscillation deflects to a position which is not parallel to the free stream, is found to only occur at higher reduced velocities. The longer splitter plate has the lower critical reduced velocity. The occurrence of bifurcation is attributed to the anti-symmetry breaking of the wake flow evolution. The resultant asymmetric mean pressure distribution on the splitter plate gives rise to the net lift force and the deviated moment on the assembly, leading to the offset mean position of splitter plate. The global vortex shedding is identified to be the classic 2S mode for both cases with and without the bifurcation, although the second vortex formation and the shedding pattern in the near wake for the bifurcate case are different from the non-bifurcate case with lower reduced velocities.

1.
A.
Roshko
, “
On the drag and shedding frequency of two-dimensional bluff bodies
,”
Technical Note 3169, NACA (National Advisory Committee for Aeronautics)
,
1954
.
2.
A.
Roshko
, “
On the wake and drag of bluff bodies
,”
J. Aeronaut. Sci.
22
,
124
(
1955
).
3.
Y.
Qiu
,
Y.
Sun
,
Y.
Wu
, and
Y.
Tamura
, “
Effects of splitter plates and Reynolds number on the aerodynamic loads acting on a circular cylinder
,”
J. Wind Eng. Ind. Aerodyn.
127
,
40
50
(
2014
).
4.
S. H.
Kwon
,
J. W.
Cho
,
J. S.
Park
, and
H. S.
Choi
, “
The effects of drag reduction by ribbons attached to cylindrical pipes
,”
Ocean Eng.
29
,
1945
1958
(
2002
).
5.
J. J.
Allen
and
A. J.
Smits
, “
Energy harvesting EEL
,”
J. Fluids Struct.
15
,
629
640
(
2001
).
6.
C. L.
Yu
,
S. C.
Ting
,
M. K.
Yeh
, and
J. T.
Yang
, “
Three-dimensional numerical simulation of hydrodynamic interactions between pectoral-fin vortices and body undulation in a swimming fish
,”
Phys. Fluids
23
,
091901
(
2011
).
7.
U.
Lacis
,
N.
Brosse
,
F.
Ingremeau
,
A.
Mazzino
,
F.
Lundell
,
H.
Kellay
, and
S.
Bagheri
, “
Passive appendages generate drift through symmetry breaking
,”
Nat. Commun.
5
,
5310
(
2014
).
8.
S.
Banerjee
,
B. S. H.
Connell
, and
D. K. P.
Yue
, “
Three-dimensional effects on flag flapping dynamics
,”
J. Fluid Mech.
783
,
103
136
(
2015
).
9.
M.
Chen
,
L. B.
Jia
,
Y. F.
Wu
,
X. Z.
Yin
, and
Y. B.
Ma
, “
Bifurcation and chaos of a flag in an inviscid flow
,”
J. Fluids Struct.
45
,
124
137
(
2014
).
10.
M.
Winkler
,
K.
Becker
,
C.
Doolan
,
F.
Kameier
, and
C. O.
Paschereit
, “
Aeroacoustic effects of a cylinder–plate configuration
,”
AIAA J.
50
,
1614
1620
(
2012
).
11.
P. W.
Bearman
, “
Investigation of the flow behind a two-dimensional model with a blunt trailing edge and fitted with splitter plates
,”
J. Fluid Mech.
21
(
2
),
241
255
(
1965
).
12.
J. H.
Gerrard
, “
The mechanics of the formation region of vortices behind bluff bodies
,”
J. Fluid Mech.
25
(
2
),
401
413
(
1966
).
13.
C. J.
Apelt
,
G. S.
West
, and
A. A.
Szewczyk
, “
The effects of wake splitter plates on the flow past a circular cylinder in the range 104 < Re < 5 × 104
,”
J. Fluid Mech.
61
(
1
),
187
198
(
1973
).
14.
C. J.
Apelt
and
G. S.
West
, “
The effects of wake splitter plates on bluff-body flow in the range 104 < Re < 5 × 104. Part 2
,”
J. Fluid Mech.
71
(
1
),
145
160
(
1975
).
15.
Y. E.
Akansu
,
M.
Sarioglu
, and
T.
Yavuz
, “
Flow around a rotatable circular cylinder-plate body at subcritical Reynolds numbers
,”
AIAA J.
42
,
1073
1080
(
2004
).
16.
E. A.
Anderson
and
A. A.
Szewczyk
, “
Effects of a splitter plate on the near wake of a circular cylinder in 2 and 3-dimensional flow configurations
,”
Exp. Fluids
23
,
161
174
(
1997
).
17.
A.
Igbalajobi
,
J. F.
Mcclean
,
D.
Sumner
, and
D. J.
Bergstrom
, “
The effect of a wake-mounted splitter plate on the flow around a surface-mounted finite-height circular cylinder
,”
J. Fluids Struct.
37
,
185
200
(
2013
).
18.
K.
Kwon
and
H.
Choi
, “
Control of laminar vortex shedding behind a circular cylinder using splitter plates
,”
Phys. Fluids
8
,
479
486
(
1996
).
19.
J. M.
Cimbala
and
S.
Garg
, “
Flow in the wake of a freely rotatable cylinder with splitter plate
,”
AIAA J.
29
,
1001
1003
(
1991
).
20.
J. M.
Cimbala
,
S.
Garg
, and
W. J.
Park
, “
The effect of a non-rigidly mounted splitter plate on the flow over a circular cylinder
,”
Bull. Am. Phys. Soc.
33
,
2249
(
1988
).
21.
J. D.
Crawford
and
E.
Knobloch
, “
Symmetry and symmetry-breaking bifurcations in fluid dynamics
,”
Annu. Rev. Fluid Mech.
23
,
341
387
(
1991
).
22.
J. M.
Cimbala
and
K. T.
Chen
, “
Supercritical Reynolds number experiments on a freely rotatable cylinder/splitter plate body
,”
Phys. Fluids
6
,
2440
2445
(
1994
).
23.
J. C.
Xu
,
M.
Sen
, and
M.
Gad-el-Hak
, “
Low Reynolds number flow over a rotatable cylinder-splitter plate body
,”
Phys. Fluids A
2
,
1925
1927
(
1990
).
24.
J. C.
Xu
,
M.
Sen
, and
M.
Gad-el-Hak
, “
Dynamics of a rotatable cylinder with splitter plate in uniform flow
,”
J. Fluids Struct.
7
,
401
416
(
1993
).
25.
G. R. S.
Assi
,
P. W.
Bearman
, and
N.
Kitney
, “
Low drag solutions for suppressing vortex-induced vibration of circular cylinders
,”
J. Fluids Struct.
25
,
666
675
(
2009
).
26.
L.
Lu
,
J. M.
Qin
,
B.
Teng
, and
Y. C.
Li
, “
Numerical investigations of lift suppression by feedback rotary oscillation of circular cylinder at low Reynolds number
,”
Phys. Fluids
23
,
033601
(
2011
).
27.
M.
Zhao
,
L.
Cheng
, and
L.
Lu
, “
Vortex induced vibrations of a rotating circular cylinder at low Reynolds number
,”
Phys. Fluids
26
,
073602
(
2014
).
28.
G.
Assi
and
P. W.
Bearman
, “
Transverse galloping of circular cylinders fitted with solid and slotted splitter plates
,”
J. Fluids Struct.
54
,
263
280
(
2015
).
29.
S.
Shukla
,
R. N.
Govardhan
, and
J. H.
Arakeri
, “
Flow over a circular cylinder with a hinged splitter plate
,”
J. Fluids Struct.
25
,
713
720
(
2009
).
30.
F.
Gu
,
J. S.
Wang
,
X. Q.
Qiao
, and
Z.
Huang
, “
Pressure distribution, fluctuating forces and vortex shedding behavior of circular cylinder with rotatable splitter plates
,”
J. Fluids Struct.
28
,
263
278
(
2012
).
31.
J.
Wu
and
C.
Shu
, “
Numerical study of flow characteristics behind a stationary circular cylinder with a flapping plate
,”
Phys. Fluids
23
,
073601
(
2011
).
32.
Y.
Sudhakar
and
S.
Vengadesan
, “
Vortex shedding characteristics of a circular cylinder with an oscillating wake splitter plate
,”
Comput. Fluids
53
,
40
52
(
2012
).
33.
Y.
Bao
and
J.
Tao
, “
Active control of a cylinder wake flow by using a streamwise oscillating foil
,”
Phys. Fluids
25
,
053601
(
2013
).
34.
Q.
Xiao
,
W. D.
Liu
, and
J. X.
Hu
, “
Parametric study on a cylinder drag reduction using downstream undulating foil
,”
Eur. J. Mech. - B/Fluids
36
,
48
62
(
2012
).
35.
S.
Bagheri
,
A.
Mazzino
, and
A.
Bottaro
, “
Spontaneous symmetry breaking of a hinged flapping filament generates lift
,”
Phys. Rev. Lett.
109
,
154502
(
2012
).
36.
S.
Shukla
,
R. N.
Govardhan
, and
J. H.
Arakeri
, “
Dynamics of a flexible splitter plate in the wake of a circular cylinder
,”
J. Fluids Struct.
41
,
127
134
(
2013
).
37.
G.
De Nayer
and
M.
Breuer
, “
Numerical FSI investigation based on LES: Flow past a cylinder with a flexible splitter plate involving large deformations (FSI-PfS-2a)
,”
Int. J. Heat Fluid Flow
50
,
300
315
(
2014
).
38.
N.
Boisaubert
and
A.
Texier
, “
Effect of a splitter plate on the near-wake development of a semicircular cylinder
,”
Exp. Therm. Fluid Sci.
16
,
100
111
(
1998
).
39.
M. S. M.
Ali
,
C. J.
Doolan
, and
V.
Wheatley
, “
Low Reynolds number flow over a square cylinder with a detached flat plate
,”
Int. J. Heat Fluid Flow
36
,
133
141
(
2012
).
40.
C. B.
Jiang
and
M.
Kawahara
, “
A three-step finite element method for unsteady incompressible flows
,”
Comput. Mech.
11
,
355
370
(
1993
).
41.
F. J.
Blom
, “
Considerations on the spring analogy
,”
Int. J. Numer. Methods Fluids
32
,
647
668
(
2000
).
42.
J. Y.
Hwang
,
K. S.
Yang
, and
S. H.
Sun
, “
Reduction of flow-induced forces on a circular cylinder using a detached splitter plate
,”
Phys. Fluids
15
,
2433
2436
(
2003
).
43.
B. S.
Carmo
,
S. J.
Sherwin
,
P. W.
Bearman
, and
R. H. J.
Willden
, “
Flow-induced vibration of a circular cylinder subjected to wake interference at low Reynolds number
,”
J. Fluids Struct.
27
,
503
522
(
2011
).
44.
C. H. K.
Williamson
and
R.
Govardhan
, “
Vortex-induced vibrations
,”
Annu. Rev. Fluid Mech.
36
,
413
455
(
2004
).
45.
T.
Sarpkaya
, “
Hydrodynamic damping, flow-induced oscillations, and biharmonic response
,”
ASME J. Offshore Mech. Arct. Eng.
117
,
232
238
(
1995
).
46.
T.
Sarpkaya
, “
A critical review of the intrinsic nature of vortex-induced vibrations
,”
J. Fluids Struct.
19
,
389
447
(
2004
).
47.
E.
Guilmineau
and
P.
Queutey
, “
Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow
,”
J. Fluids Struct.
19
,
449
466
(
2004
).
48.
G. R. S.
Assi
,
P. W.
Bearman
,
B.
Carmo
,
J.
Meneghini
,
S.
Sherwin
, and
R.
Willden
, “
The role of wake stiffness on the wake-induced vibration of the downstream cylinder of a tandem pair
,”
J. Fluid Mech.
718
,
210
245
(
2013
).
49.
J. M.
Cimbala
and
J.
Leon
, “
Drag of freely rotatable cylinder/splitter-plate body at subcritical Reynolds number
,”
AIAA J.
34
,
2446
2448
(
1996
).
You do not currently have access to this content.