An exact solution is found for laminar fluid flow along the grooves of a family of surfaces whose shape is given by the Lambert W-function. This simple solution allows for the slip length in the direction parallel to the grooves to be calculated exactly. With this analytical model, we establish the regime of validity for a previously untested perturbation theory intended for calculating the surface mobility tensor of arbitrary periodic surfaces, finding that it compares well to the exact expression for nearly all choices of parameters of the conformal map. To test this perturbation theory further, the mobility tensor is evaluated for a simple sinusoidal surface for flow both parallel and perpendicular to the grooves, finding that the perturbation theory is less accurate in the latter of these two cases.

1.
J. P.
Rothstein
, “
Slip on superhydrophobic surfaces
,”
Annu. Rev. Fluid Mech.
42
,
89
109
(
2009
).
2.
M. Z.
Bazant
and
O. I.
Vinogradova
, “
Tensorial hydrodynamic slip
,”
J. Fluid Mech.
613
,
125
134
(
2008
).
3.
S.
Lyu
,
D. C.
Nguyen
,
D.
Kim
,
W.
Hwang
, and
B.
Yoon
, “
Experimental drag reduction study of super-hydrophobic surface with dual-scale structures
,”
Appl. Surf. Sci.
286
,
206
211
(
2013
).
4.
S.
Türk
,
G.
Daschiel
,
A.
Stroh
,
Y.
Hasegawa
, and
B.
Frohnapfel
, “
Turbulent flow over superhydrophobic surfaces with streamwise grooves
,”
J. Fluid Mech.
747
,
186
217
(
2014
).
5.
Y. L.
Zhang
,
H.
Xia
,
E.
Kim
, and
H. B.
Sun
, “
Recent developments in superhydrophobic surfaces with unique structural and functional properties
,”
Soft Matter
8
,
11217
(
2012
).
6.
S.
Zhang
,
X.
Ouyang
,
J.
Li
,
S.
Gao
,
S.
Han
,
L.
Liu
, and
H.
Wei
, “
Underwater drag-reducing effect of superhydrophobic submarine model
,”
Langmuir
31
,
587
593
(
2015
).
7.
D. W.
Bechert
,
M.
Bruse
, and
W.
Hage
, “
Experiments with three-dimensional riblets as an idealized model of shark skin
,”
Exp. Fluids
28
,
403
412
(
2000
).
8.
M.
Sasamori
,
H.
Mamori
,
K.
Iwamoto
, and
A.
Murata
, “
Experimental study on drag-reduction effect due to sinusoidal riblets in turbulent channel flow
,”
Exp. Fluids
55
,
1828
(
2014
).
9.
A.
Shapiro
,
Shape and Flow
(
Heinemann
,
1964
).
10.
C. Y.
Wang
, “
Drag due to a striated boundary in slow Couette flow
,”
Phys. Fluids
21
,
697
698
(
1978
).
11.
C. Y.
Wang
, “
Stokes flow through a channel with three-dimensional bumpy walls
,”
Phys. Fluids
16
,
2136
(
2004
).
12.
M.
Scholle
, “
Creeping couette flow over an undulated plate
,”
Arch. Appl. Mech. (Ing.-Arch.)
73
,
823
840
(
2004
).
13.
A.
Niavarani
and
N. V.
Priezjev
, “
The effective slip length and vortex formation in laminar flow over a rough surface
,”
Phys. Fluids
21
,
052105
(
2009
).
14.
K.
Kamrin
,
M. Z.
Bazant
, and
H. A.
Stone
, “
Effective slip boundary conditions for arbitrary periodic surfaces: The surface mobility tensor
,”
J. Fluid Mech.
658
,
409
437
(
2010
).
15.
P.
Dennery
and
A.
Krzywicki
,
Mathematics for Physicists
(
Dover Publications, Inc.
,
1996
).
16.
NIST Digital Library of Mathematical Functions - Section 4.13 Lambert W-Function, Release 1.0.10, 2015, http://dlmf.nist.gov/4.13.
17.
E.
Jones
,
E.
Oliphant
, and
P.
Peterson
, SciPy: Open Source Scientific Tools for Python, 2001, http://www.scipy.org/.
18.
COMSOL Multiphysics
, Comsol Multiphysics User Guide Version 5.1, 2015.
You do not currently have access to this content.