We consider, for the first time, the stability of the non-Newtonian boundary layer flow over a flat plate. Shear-thinning and shear-thickening flows are modelled using a Carreau constitutive viscosity relationship. The boundary layer equations are solved in a self-similar fashion. A linear asymptotic stability analysis, that concerns the lower-branch structure of the neutral curve, is presented in the limit of large Reynolds number. It is shown that the lower-branch mode is destabilised and stabilised for shear-thinning and shear-thickening fluids, respectively. Favourable agreement is obtained between these asymptotic predictions and numerical results obtained from an equivalent Orr-Sommerfeld type analysis. Our results indicate that an increase in shear-thinning has the effect of significantly reducing the value of the critical Reynolds number, this suggests that the onset of instability will be significantly advanced in this case. This postulation, that shear-thinning destabilises the boundary layer flow, is further supported by our calculations regarding the development of the streamwise eigenfunctions and the relative magnitude of the temporal growth rates.

1.
H.
Blasius
, “
Grenzschichten in Flüssigkeiten mit Kleiner Reibung
,”
Z. Math. Phys.
56
,
1
37
(
1908
).
2.
W.
Tollmien
, “
Über die Entstehung der Turbulenz
,”
Nachr. Ges. Wiss. Göttingen Math. Phys. Kl.
II
,
21
44
(
1929
).
3.
H.
Schlichting
, “
Laminare Strahlausbreitung
,”
Z. Angew. Math. Mech.
13
,
260
263
(
1933
).
4.
G. B.
Schubauer
and
H. K.
Skramstad
, “
Laminar boundary-layer oscillations and transition on a flat plate
,”
J. Res. Natl. Bur. Stand.
38
,
251
292
(
1947
).
5.
R.
Jordinson
, “
The flat plate boundary layer. Part 1. Numerical integration of the Orr-Sommerfeld equation
,”
J. Fluid Mech.
43
,
801
811
(
1970
).
6.
M. D. J.
Barry
and
M. A. S.
Ross
, “
The flat plate boundary layer. Part 2. The effect of increasing thickness on stability
,”
J. Fluid Mech.
43
,
813
818
(
1970
).
7.
J. A.
Ross
,
F. H.
Barnes
,
J. G.
Burns
, and
M. A. S.
Ross
, “
The flat plate boundary layer. Part 3. Comparison of theory with experiment
,”
J. Fluid Mech.
43
,
819
832
(
1970
).
8.
F. T.
Smith
, “
On the non-parallel flow stability of the Blasius boundary layer
,”
Proc. R. Soc. London, Ser. A
366
,
91
109
(
1979
).
9.
R. J.
Bodonyi
and
F. T.
Smith
, “
The upper branch stability of the Blasius boundary layer, including non-parallel flow effects
,”
Proc. R. Soc. London, Ser. A
375
,
65
92
(
1981
).
10.
J. J.
Healey
, “
On the neutral curve of the flat-plate boundary layer: comparison between experiment, Orr-Sommerfeld theory and asymptotic theory
,”
J. Fluid Mech.
288
,
59
73
(
1995
).
11.
L. S.
Hultgren
, “
Higher eigenmodes in the Blasius boundary-layer stability problem
,”
Phys. Fluids
29
,
2947
2951
(
1987
).
12.
H.
Fasel
and
U.
Konzelmann
, “
Non-parallel stability of a flat plate boundary layer using the complete Navier-Stokes equations
,”
J. Fluid Mech.
221
,
311
347
(
1990
).
13.
F. P.
Bertolotti
,
Th.
Herbert
, and
P. R.
Spalart
, “
Linear and nonlinear stability of the Blasius boundary layer
,”
J. Fluid Mech.
242
,
441
474
(
1992
).
14.
Th.
Herbert
, “
Parabolized stability equations
,”
Annu. Rev. Fluid Mech.
29
,
245
283
(
1997
).
15.
W. R.
Schowalter
, “
The application of boundary-layer theory to power-law pseudoplastic fluids: Similar solutions
,”
AIChE J.
6
,
24
28
(
1960
).
16.
A.
Acrivos
,
M. J.
Shah
, and
E. E.
Peterson
, “
Momentum and heat transfer in laminar boundary-layer flows of non-Newtonian fluids past external bodies
,”
AIChE J.
6
,
312
317
(
1960
).
17.
J. P.
Denier
and
P. P.
Dabrowski
, “
On the boundary-layer equations for power-law fluids
,”
Proc. R. Soc. London, Ser. A
460
,
3143
3158
(
2004
).
18.
P. P.
Dabrowski
, “
Boundary-layer flows in non-Newtonian fluids
,” Ph.D. thesis,
School of Mathematical Sciences, The University of Adelaide
,
2009
.
19.
P. T.
Griffiths
, “
Flow of a generalised Newtonian fluid due to a rotating disk
,”
J. Non-Newtonian Fluid Mech.
221
,
9
17
(
2015
).
20.
P. T.
Griffiths
, “
Hydrodynamic stability of non-Newtonian rotating boundary-layer flows
,” Ph.D. thesis,
School of Mathematics, University of Birmingham
,
2015
.
21.
P. T.
Griffiths
,
S. O.
Stephen
,
A. P.
Bassom
, and
S. J.
Garrett
, “
Stability of the boundary layer on a rotating disk for power-law fluids
,”
J. Non-Newtonian Fluid Mech.
207
,
1
6
(
2014
).
22.
P. J.
Carreau
, “
Rheological equations from molecular network theories
,”
Trans. Soc. Rheol.
16
(
1
),
99
127
(
1972
).
23.
C.
Nouar
,
A.
Bottaro
, and
J. P.
Brancher
, “
Delaying transition to turbulence in channel flow: revisiting the stability of shear-thinning fluids
,”
J. Fluid Mech.
592
,
177
194
(
2007
).
24.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids: Volume 1. Fluid Mechanics
, 2nd ed. (
Wiley-Interscience
,
1987
).
25.
C. W.
Jones
and
R. J.
Watson
, in
Laminar Boundary Layers
(
Oxford University Press
,
1963
), Chap. V, pp.
222
226
.
26.
T. A.
Driscoll
,
N.
Hale
, and
L. N.
Trefethen
,
Chebfun Guide
(
Pafnuty Publications
,
2014
).
27.
T. A.
Driscoll
,
F.
Bornemann
, and
L. N.
Trefethen
, “
The chebop system for automatic solution of differential equations
,”
BIT Numer. Math.
48
,
701
723
(
2008
).
28.
C.
Thomas
, “
Numerical simulations of disturbance development in rotating boundary-layers
,” Ph.D. thesis,
School of Mathematics, Cardiff University
,
2007
.
29.
I.
Lashgari
,
J. O.
Pralits
,
F.
Giannetti
, and
L.
Brandt
, “
First instability of the flow of shear-thinning and shear-thickening fluids past a circular cylinder
,”
J. Fluid Mech.
701
,
201
227
(
2012
).
You do not currently have access to this content.