In this paper, we consider the roll-up of an infinite vortex sheet and investigate its self-similar behavior. We address the question of whether the unsteady double spiral produced by the curvature singularity in finite time exhibits self-similar behavior. We find a self-similar solution of the double-spiral vortex sheet, which in fact, is a hyperbolic spiral. The radius of the spiral asymptotically grows with time and is proportional to the inverse of the angle from the spiral center. The curvature singularity plays the role of triggering spiral formation, but the source of vorticity for forming the spiral is the initial vorticity of the sheet. We show analytically that the self-similar solution satisfies the Birkhoff-Rott equation asymptotically. Numerical validation is also given by applying the blob-regularization model to the vortex sheet with a periodic perturbation. We examine various asymptotic relations among primitive variables for the spiral turns and find agreement of numerical results of the inner turns of the vortex sheet with the analytic solution. Our study clarifies contrasting results on the existence of the self-similar double-spiral of a large structure in the previous studies. Our solution also suggests the possibility of bifurcation of the self-similar solution of the double-spiral as the sheet strength varies.

1.
G.
Birkhoff
, “
Helmholtz and Taylor instability
,” in
Proceedings of Symposia in Applied Mathematics
(
American Mathematical Society
,
Providence
,
1962
), Vol.
XIII
, p.
55
.
2.
P. G.
Saffman
,
Vortex Dynamics
(
Cambridge University Press
,
New York, USA
,
1992
).
3.
L.
Prandtl
, “
Über die entstehung von wirbeln in der idealen flüssigkeit, mit anwendung auf die tragflgeltheorie und andere aufgaben
,” in
Vortrge aus dem Gebiete der Hydro- und Aerodynamik
(
Springer
,
Berlin
,
1922
).
4.
R. C.
Alexander
, “
Family of similarity flows with vortex sheets
,”
Phys. Fluids
14
,
231
(
1971
).
5.
Y.
Kaneda
, “
A family of analytical solutions of the motions of double-branched spiral vortex sheets
,”
Phys. Fluids A
1
,
261
(
1989
).
6.
T.
Kambe
, “
Spiral vortex solution of Birkhoff-Rott equation
,”
Physica D
37
,
463
(
1989
).
7.
H.
Kaden
, “
Aufwicklung einer unstabilen unstetgkeitsfläche
,”
Ing. Arch.
2
,
140
(
1931
).
8.
D. W.
Moore
and
P. G.
Saffman
, “
Axial flow in laminar trailing vorticies
,”
Proc. R. Soc. London, Ser. A
333
,
491
(
1973
).
9.
D. I.
Pullin
, “
The large-scale structure of unsteady self-similar rolled-up vortex sheets
,”
J. Fluid Mech.
88
,
401
(
1978
).
10.
D. I.
Pullin
and
W. R. C.
Phillips
, “
On a generalization of Kaden’s problem
,”
J. Fluid Mech.
104
,
45
(
1981
).
11.
J.
Jimenez
, “
On the visual growth of a turbulent mixing layer
,”
J. Fluid Mech.
96
,
447
(
1980
).
12.
D. I.
Pullin
, “
On similarity flows containing two-branched vortex sheets
,” in
Mathematical Aspects of Vortex Dynamics
(
SIAM
,
Philadelphia
,
1989
), p.
97
.
13.
C.
De Lellis
and
L.
Szekelyhidi
, Jr.
, “
The Euler equations as a differential inclusion
,”
Ann. Math.
170
,
1417
(
2009
).
14.
C.
De Lellis
and
L.
Szekelyhidi
, Jr.
, “
On admissibility criteria for weak solutions of the Euler equations
,”
Arch. Ration. Mech. Anal.
195
,
225
(
2010
).
15.
L.
Szekelyhidi
, Jr.
, “
Weak solutions to the incompressible Euler equations with vortex sheet initial data
,”
C. R. Acad. Sci. Paris Ser. I Math.
349
,
19
(
2011
).
16.
D. W.
Moore
, “
The spontaneous appearance of a singularity in the shape of an evolving vortex sheet
,”
Proc. R. Soc. London, Ser. A
365
,
105
(
1979
).
17.
D. I.
Meiron
,
G. R.
Baker
, and
S. A.
Orszag
, “
Analytic structure of vortex sheet dynamics. Part 1. Kelvin-Helmholtz instability
,”
J. Fluid Mech.
114
,
283
(
1982
).
18.
R.
Krasny
, “
A study of singularity formation in a vortex sheet by the point-vortex approximation
,”
J. Fluid Mech.
167
,
65
(
1986
).
19.
M. J.
Shelley
, “
A study of singularity formation in vortex-sheet motion by a spectrally accurate vortex method
,”
J. Fluid Mech.
244
,
493
(
1992
).
20.
S.-I.
Sohn
, “
Singularity formation and nonlinear evolution of a viscous vortex sheet model
,”
Phys. Fluids
25
,
014106
(
2013
).
21.
R.
Krasny
, “
Desingularization of periodic vortex sheet roll-up
,”
J. Comput. Phys.
65
,
292
(
1986
).
22.
A.
Betz
, “
Verhalten von wirbelsystemen
,”
ZAMM
12
,
164
174
(
1932
).
23.
D. W.
Moore
, “
The rolling up of a semi-infinite vortex sheet
,”
Proc. R. Soc. London, Ser. A
345
,
417
(
1975
).
24.
G. R.
Baker
and
L. D.
Pham
, “
A comparison of blob methods for vortex sheet roll-up
,”
J. Fluid Mech.
547
,
297
(
2006
).
25.
J.-G.
Liu
and
Z.
Xin
, “
Convergence of vortex methods for weak solutions to the 2D Euler equations with vortex sheet data
,”
Commun. Pure Appl. Math.
48
,
611
(
1995
).
26.
S.-I.
Sohn
, “
Two vortex-blob regularization models for vortex sheet motion
,”
Phys. Fluids
26
,
044105
(
2014
).
27.
S.-C.
Kim
,
J.-Y.
Lee
, and
S.-I.
Sohn
, “
Long time computation of two-dimensional vortex sheet by point vortex method
,”
J. Phys. Soc. Jpn.
72
,
1968
(
2003
).
28.
G. L.
Eyink
and
K. R.
Sreenivasan
, “
Onsager and the theory of hydrodynamic turbulence
,”
Rev. Mod. Phys.
78
,
87
(
2006
).
29.
J.
Hoepffner
,
R.
Blumenthal
, and
S.
Zaleski
, “
Self-similar wave produced by local perturbation of the Kelvin-Helmholtz shear-layer instability
,”
Phys. Rev. Lett.
106
,
104502
(
2011
).
You do not currently have access to this content.