The control of transition from a laminar to a turbulent flow over a flat plate using localized dynamic surface modifications was explored experimentally in Rensselaer Polytechnic Institute’s subsonic wind tunnel. Dynamic surface modification, via a pair of Piezoelectrically Driven Oscillating Surface (PDOS) actuators, was used to excite and control the T-S wave over a flat plate. Creating an upstream, localized small disturbance at the most amplified frequency of fact = 250 Hz led to phase-locking the T-S wave. This enabled observation of the excited T-S wave using phase-locked stereoscopic particle image velocimetry. The growth of the T-S wave as it moved downstream was also measured using this technique (25% growth over four wavelengths of the excited wave). Activation of a downstream PDOS actuator (in addition to the upstream PDOS) at the appropriate amplitude and phase shift resulted in attenuation of the peak amplitude of the coherent velocity fluctuations (by up to 68%) and a substantial reduction of the degree of coherence of the T-S wave. Since the PDOS actuators used in this work were localized, the effect of the control strategy was confined to the region directly downstream of the PDOS actuator.

1.
H.
Schlichting
and
K.
Gersten
,
Boundary-Layer Theory
, 8th ed. (
Springer-Verlag
,
New York
,
2001
).
2.
Y. S.
Kachanov
, “
Physical mechanisms of laminar-boundary-layer transition
,”
Annu. Rev. Fluid Mech.
26
(
1
),
411
482
(
1994
).
3.
A.
Michalke
, “
On the inviscid instability of the hyperbolictangent velocity profile
,”
J. Fluid Mech.
19
(
4
),
543
556
(
1964
).
4.
H.
Opfer
, “
Active cancellation of 3D Tollmien-Schlichting waves in the presence of sound and vibrations
,” Ph.D. dissertation (
Georg-August-Universität zu Göttingen, Göttingen
,
2002
).
5.
M.
Gaster
, “
A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability
,”
J. Fluid Mech.
14
(
02
),
222
(
1962
).
6.
M.
Gaster
, “
On the generation of spatially growing waves in a boundary layer
,”
J. Fluid Mech.
22
(
03
),
433
(
1965
).
7.
R.
Jordinson
, “
The flat plate boundary layer. Part 1. Numerical integration of the Orr—Sommerfeld equation
,”
J. Fluid Mech.
43
(
04
),
801
(
1970
).
8.
O. H.
Wehrmann
, “
Tollmien-Schlichting waves under the influence of a flexible wall
,”
Phys. Fluids
8
(
7
),
1389
(
1965
).
9.
R. D.
Joslin
,
R. A.
Nicolaides
,
G.
Erlebacher
,
M. Y.
Hussaini
, and
M. D.
Gunzburger
, “
Active control of boundary-layer instabilities: Use of sensors and spectral controller
,”
AIAA J.
33
(
8
),
1521
1523
(
1995
).
10.
R. D.
Joslin
,
G.
Erlebacher
, and
M. Y.
Hussaini
, “
Active control of instabilities in laminar boundary layers—Overview and concept validation
,”
J. Fluids Eng.
118
(
3
),
494
(
1996
).
11.
A. S. W.
Thomas
, “
The control of boundary layer transition using a wave-superposition principle
,”
J. Fluid Mech.
137
(
1
),
233
249
(
1983
).
12.
H. W.
Liepmann
,
G. L.
Brown
, and
D. M.
Nosenchuck
, “
Control of laminar-instability waves using a new technique
,”
J. Fluid Mech.
118
,
187
200
(
1982
).
13.
H. W.
Liepmann
and
D. M.
Nosenchuck
, “
Active control of laminar-turbulent transition
,”
J. Fluid Mech.
118
,
201
204
(
1982
).
14.
N. R.
Losse
,
R.
King
,
M.
Zengl
,
U.
Rist
, and
B. R.
Noack
, “
Control of Tollmien–Schlichting instabilities by finite distributed wall actuation
,”
Theor. Comput. Fluid Dyn.
25
(
1–4
),
167
178
(
2011
).
15.
A.
Widmann
,
A.
Duchmann
,
A.
Kurz
,
S.
Grundmann
, and
C.
Tropea
, “
Measuring Tollmien–Schlichting waves using phase-averaged particle image velocimetry
,”
Exp. Fluids
53
(
3
),
707
715
(
2012
).
16.
A.
Duchmann
,
A.
Kurz
,
A.
Widmann
,
S.
Grundmann
, and
C.
Tropea
, “
Characterization of Tollmien-Schlichting wave damping by DBD plasma actuators using phase-locked PIV
,” AIAA Paper 2012–903,
2012
.
17.
A.
Widmann
,
A.
Kurz
,
B.
Simon
,
S.
Grundmann
, and
C.
Tropea
, “
Characterization of the interaction between Tollmien-Schlichting waves and a DBD plasma actuator using phase-locked PIV
,” in
10th International Symposium on Particle Image Velocimetry
(
Delft University of Technology
,
2013
), pp.
1
9
.
18.
S.
Grundmann
and
C.
Tropea
, “
Active cancellation of artificially introduced Tollmien–Schlichting waves using plasma actuators
,”
Exp. Fluids
44
(
5
),
795
806
(
2008
).
19.
S.
Grundmann
and
C.
Tropea
, “
Experimental damping of boundary-layer oscillations using DBD plasma actuators
,”
Int. J. Heat Fluid Flow
30
(
3
),
394
402
(
2009
).
20.
D.
Sturzbecher
and
W.
Nitsche
, “
Active cancellation of Tollmien–Schlichting instabilities on a wing using multi-channel sensor actuator systems
,”
Int. J. Heat Fluid Flow
24
(
4
),
572
583
(
2003
).
21.
M.
Engert
and
P.
Andreas
, “
Active cancellation of Tollmien–Schlichting instabilities in compressible flows using closed-loop control
,” in
IUTAM Symposium on Flow Control and MEMS
(
Springer, Netherlands
,
2008
), pp.
319
331
.
22.
A.
Kurz
,
C.
Tropea
,
S.
Grundmann
,
S.
Interfaces
, and
T. U.
Darmstadt
, “
Development of active wave cancellation using DBD plasma actuators for in-flight transition control
,” AIAA Paper 2012-2946,
2012
.
23.
K.
Barckmann
,
C.
Tropea
, and
S.
Grundmann
, “
Attenuation of Tollmien–Schlichting waves using plasma actuator vortex generators
,”
AIAA J.
53
(
5
),
1384
1388
(
2015
).
24.
R.
de Quadros
,
S.
Grundmann
,
C.
Tropea
,
J.
Elsemueller
, and
S.
Ulbrich
, “
Numerical optimization of DBD plasma actuator operating parameters for active wave cancellation using sinusoidal modulation
,” in
Sixth International Symposium on Turbulence and Shear Flow Phenomena
(
TSFP Digital Library Online, Begel House Inc.
,
2009
), pp.
766
770
.
25.
M.
Kotsonis
,
R.
Giepman
,
S.
Hulshoff
, and
L.
Veldhuis
, “
Numerical study of the control of Tollmien–Schlichting waves using plasma actuators
,”
AIAA J.
51
(
10
),
2353
2364
(
2013
).
26.
T.
Van Buren
and
M.
Amitay
, “
Piezoelectric driven oscillating surface
,” WO patent WO 2014123615 A2 (
2014
).
27.
A. K. M. F.
Hussain
and
W. C.
Reynolds
, “
The mechanics of an organized wave in turbulent shear flow
,”
J. Fluid Mech.
41
(
02
),
241
258
(
1970
).
You do not currently have access to this content.