A typical experiment to measure monolayer surface rheological properties consists of two parallel, slightly immersed, moving solid barriers that compress and expand a shallow liquid layer that contains the surfactant monolayer in its free surface. The area between the barriers controls the surfactant concentration, which is frequently assumed as spatially constant. In order to minimize the fluid dynamics and other non-equilibrium effects, the barriers motion is very slow. Nevertheless, the surfactant concentration dynamics exhibit some unexpected features such as irreversibility, suggesting that the motion is not slow enough. We present a long wave theory that takes into account the fluid dynamics in the bulk phase coupled to the free surface elevation. In addition, apparent irreversibility is also discussed that may result from artifacts associated with the menisci dynamics when surface tension is measured using a Wilhelmy plate. Instead, additional, purely chemical, non-equilibrium effects are ignored. Results from this theory are discussed for varying values of the parameters, which permit establishing specific predictions on experiments. On the other hand, these results compare fairly well with the available experimental observations, at least qualitatively. The overall conclusion is that the fluid dynamics should not be ignored in the analysis of these experimental devices.

1.
L. M. C.
Saguis
, “
Dynamic properties of interfaces in soft matter: Experiments and theory
,”
Rev. Mod. Phys.
84
,
1367
(
2011
).
2.
P.
Tabeling
,
Introduction to Microfluidics
(
Oxford University Press
,
2005
).
3.
E. B.
Gutoff
and
E. D.
Cohen
,
Coating and Drying Defects, Troubleshooting Operating Problems
(
Wiley-Interscience
,
2006
).
4.
Y.
Couder
,
J. M.
Chomaz
, and
M.
Rabaud
, “
On the hydrodynamics of soap films
,”
Physica D
37
,
384
(
1989
).
5.
D.
Langevin
and
V.
Bergeron
, “
Thin-film forces in foam films containing anionic polyelectrolyte and charged surfactants
,”
Langmuir
12
,
1550
(
1996
).
6.
L.
Wilhelmy
, “
Über die abhängigkeit der capillaritäts-Constanten des alkohols von substanz und gestalt des benetzten festen körpers
,”
Ann. Phys.
119
,
177
(
1863
).
7.
H. M.
Princen
, “
Capillary phenomena in assemblies of parallel cylinders. II. Capillary rise between two cylinders
,”
J. Colloid Interface Sci.
30
,
69
(
1969
).
8.
H.
Hilles
,
F.
Monroy
,
L. J.
Bonales
,
F.
Ortega
, and
R. G.
Rubio
, “
Fourier transform rheology of polymer Langmuir monolayers: Analysis of the nonlinear and plastic behaviors
,”
Adv. Colloid Interface Sci.
122
,
67
(
2006
).
9.
H.
Hilles
,
A.
Maestro
,
F.
Monroy
,
F.
Ortega
,
R. G.
Rubio
, and
M. G.
Velarde
, “
Polymer monolayers with a small viscoelastic linear regime: Equillibrium and rheology of poly(octadecyl acrylate) and poly(vinyl stearate)
,”
J. Chem. Phys.
126
,
124904
(
2007
).
10.
S.
Kato
and
M.
Kawaguchi
, “
Surface dilatational moduli of poly (ethylene oxide), poly (methil methacrylate), and their bended films
,”
J. Colloid Interface Sci.
384
,
87
(
2012
).
11.
N.
Mitsui
,
T.
Morioka
, and
M.
Kawaguchi
, “
Surface dilational moduli of poly(vinyl acetate), poly (methyl metahcrylate), and their blend films spread at the air-water interface
,”
Colloids Surf., A
395
,
248
(
2012
).
12.
T.
Kobayashi
and
M.
Kawaguchi
, “
Surface dilatational moduli of latex-particle monolayers spread in air-water interface
,”
J. Colloid Interface Sci.
390
,
147
(
2013
).
13.
V. B.
Fainerman
,
S. V.
Lylyk
,
E. V.
Aksenenko
,
J. T.
Petkov
,
J.
Yorke
, and
R.
Miller
, “
Surface tension isotherms, adsorption dynamics and dilational visco-elasticity of sodium dodecyl sulphate
,”
Colloid Surf. A
354
,
8
(
2010
).
14.
M.
Higuera
,
J. M.
Perales
, and
J. M.
Vega
, “
Nonlinear dynamics in experimental devices with compressed/expanded surfactant monolayers
,”
Fluid Dyn. Res.
46
,
041404
(
2014
).
15.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
2000
).
16.
R. G.
Rubio
, personal communication (2015).
17.
N.
de Nevers
,
Fluid Mechanics
(
Addison-Wesley
,
1970
).
18.
A.
Oron
,
S. H.
Davis
, and
S. G.
Bankoff
, “
Long-scale evolution of thin liquid films
,”
Rev. Mod. Phys.
69
,
931
(
1997
).
19.
D.
Halpern
and
J. B.
Grotberg
, “
Transport of a localized soluble surfactant on a thin film
,”
J. Fluid Mech.
237
,
1
(
1992
).
20.
M.
Renardy
, “
On an equation describing the spreading of surfactants on thin films
,”
Nonlin. Anal.: Theory Methods and Applications
26
,
1207
(
1996
).
21.
O. K.
Matar
and
S. M.
Troian
, “
Spreading of a surfactant monolayer on a thin liquid film: Onset and evolution of digitated structures
,”
Chaos
9
,
141
(
1999
).
22.
A. D.
Dassaud
,
O. K.
Matar
, and
S. M.
Troian
, “
Spreading characteristics of an insoluble surfactant film on a thin liquid layer: Comparison between theory and experiment
,”
J. Fluid Mech.
544
,
23
(
2005
).
23.
R.
Krechetnikov
, “
On application of lubrication approximations to nonunidirectional coating flows with clean and surfactant interfaces
,”
Phys. Fluids
22
,
092102
(
2010
).
24.
M.
Morozov
,
A.
Oron
, and
A. A.
Nepomnyashchy
, “
Long-wave Marangoni convection in a layer of surfactant solution
,”
Phys. Fluids
26
,
112101
(
2014
).
25.
M.
Morozov
,
A.
Oron
, and
A. A.
Nepomnyashchy
, “
Long-wave Marangoni convection in a layer of surfactant solution: Bifurcation analysis
,”
Phys. Fluids
27
,
082107
(
2015
).
26.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
1979
).
27.
E. B.
Dussan
, “
On the spreading of liquids on solids surfaces: Static and dynamic contact lines
,”
Annu. Rev. Fluid Mech.
11
,
371
(
1979
).
28.
P. G.
de Gennes
, “
Wetting: Statics and dynamics
,”
Rev. Mod. Phys.
57
,
827
(
1985
).
29.
P. G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(
Springer
,
2002
).
30.
J. H.
Snoeijer
and
B.
Andreotti
, “
Moving contact lines: Scales, regimes, and dynamical transitions
,”
Annu. Rev. Fluid Mech.
45
,
269
(
2013
).
You do not currently have access to this content.