Efficient mixing is of significant importance in numerous chemical and biomedical applications but difficult to realize rapidly in microgeometries due to the lack of turbulence. We propose to enhance mixing by introducing Lagrangian chaos through electro-osmosis (EO) or induced charge electro-osmosis (ICEO) in an eccentric annulus. The analysis reveals that the created Lagrangian chaos can achieve a homogeneous mixing much more rapidly than either the pure EO or the pure ICEO. Our systematic investigations on the key parameters, ranging from the eccentricity, the alternating time period, the number of flow patterns in one time period, to the specific flow patterns utilized for the Lagrangian chaos creation, present that the Lagrangian chaos is considerably robust. The system can obtain a good mixing effect with wide ranges of eccentricity, alternating time period, and specific flow patterns utilized for the Lagrangian chaos creation as long as the number of flow patterns in one time period is two. As the electric field increases, the time consumption for homogenous mixing is reduced more remarkably for the Lagrangian chaos of the ICEO than that of the EO.

1.
T.-C.
Kuo
,
H.-K.
Kim
,
D. M.
Cannon
,
M. A.
Shannon
,
J. V.
Sweedler
, and
P. W.
Bohn
, “
Nanocapillary arrays effect mixing and reaction in multilayer fluidic structures
,”
Angew. Chem.
116
,
1898
1901
(
2004
).
2.
A.
Patashinski
,
R.
Orlik
,
M.
Ratner
, and
B. A.
Grzybowski
, “
Chemical reaction facilitates nanoscale mixing
,”
Soft Matter
6
,
4441
4445
(
2010
).
3.
C.
Simonnet
and
A.
Groisman
, “
High-throughput and high-resolution flow cytometry in molded microfluidic devices
,”
Anal. Chem.
78
,
5653
5663
(
2006
).
4.
A.-S.
Yang
,
F.-C.
Chuang
,
C.-K.
Chen
,
M.-H.
Lee
,
S.-W.
Chen
,
T.-L.
Su
, and
Y.-C.
Yang
, “
A high-performance micromixer using three-dimensional tesla structures for bio-applications
,”
Chem. Eng. J.
263
,
444
451
(
2015
).
5.
D. W.
DePaoli
,
C.
Tsouris
, and
M. Z.-C.
Hu
, “
Ehd micromixing reactor for particle synthesis
,”
Powder Technol.
135
,
302
309
(
2003
).
6.
D.
Dendukuri
and
P. S.
Doyle
, “
The synthesis and assembly of polymeric microparticles using microfluidics
,”
Adv. Mater.
21
,
4071
4086
(
2009
).
7.
J.-A.
Martínez
,
J.-M.
Nicolás
,
F.
Marco
,
J.-P.
Horcajada
,
G.
Garcia-Segarra
,
A.
Trilla
,
C.
Codina
,
A.
Torres
, and
J.
Mensa
, “
Comparison of antimicrobial cycling and mixing strategies in two medical intensive care units*
,”
Crit. Care Med.
34
,
329
336
(
2006
).
8.
J.
Deseigne
,
C.
Cottin-Bizonne
,
A. D.
Stroock
,
L.
Bocquet
, and
C.
Ybert
, “
How a ‘pinch of salt’ can tune chaotic mixing of colloidal suspensions
,”
Soft Matter
10
,
4795
4799
(
2014
).
9.
N.-T.
Nguyen
and
Z.
Wu
, “
Micromixersa review
,”
J. Micromech. Microeng.
15
,
R1
(
2005
).
10.
A.
Boschan
,
M. A.
Aguirre
, and
G.
Gauthier
, “
Suspension flow: Do particles act as mixers?
,”
Soft Matter
11
,
3367
3372
(
2015
).
11.
M. S.
Thomas
,
J. M.
Clift
,
B.
Millare
, and
V. I.
Vullev
, “
Print-and-peel fabricated passive micromixers
,”
Langmuir
26
,
2951
2957
(
2009
).
12.
Z.
Che
,
N.-T.
Nguyen
, and
T. N.
Wong
, “
Analysis of chaotic mixing in plugs moving in meandering microchannels
,”
Phys. Rev. E
84
,
066309
(
2011
).
13.
T.
Fujii
,
Y.
Sando
,
K.
Higashino
, and
Y.
Fujii
, “
A plug and play microfluidic device
,”
Lab Chip
3
,
193
197
(
2003
).
14.
I.
Glasgow
and
N.
Aubry
, “
Enhancement of microfluidic mixing using time pulsing
,”
Lab Chip
3
,
114
120
(
2003
).
15.
O.
Jännig
and
N.-T.
Nguyen
, “
A polymeric high-throughput pressure-driven micromixer using a nanoporous membrane
,”
Microfluid. Nanofluid.
10
,
513
519
(
2011
).
16.
S.
Yu
,
T.-J.
Jeon
, and
S. M.
Kim
, “
Active micromixer using electrokinetic effects in the micro/nanochannel junction
,”
Chem. Eng. J.
197
,
289
294
(
2012
).
17.
G.-P.
Zhu
and
N.-T.
Nguyen
, “
Rapid magnetofluidic mixing in a uniform magnetic field
,”
Lab Chip
12
,
4772
4780
(
2012
).
18.
T.
Frommelt
,
M.
Kostur
,
M.
Wenzel-Schäfer
,
P.
Talkner
,
P.
Hänggi
, and
A.
Wixforth
, “
Microfluidic mixing via acoustically driven chaotic advection
,”
Phys. Rev. Lett.
100
,
034502
(
2008
).
19.
B.
Xu
,
T. N.
Wong
, and
N.-T.
Nguyen
, “
Experimental and numerical investigation of thermal chaotic mixing in a T-shaped microchannel
,”
Heat Mass Transfer
47
,
1331
1339
(
2011
).
20.
Y. K.
Suh
and
S.
Kang
, “
A review on mixing in microfluidics
,”
Micromachines
1
,
82
111
(
2010
).
21.
C.-Y.
Lee
,
C.-L.
Chang
,
Y.-N.
Wang
, and
L.-M.
Fu
, “
Microfluidic mixing: A review
,”
Int. J. Mol. Sci.
12
,
3263
3287
(
2011
).
22.
C.-C.
Cho
,
C.-L.
Chen
 et al., “
Mixing enhancement of electrokinetically-driven non-newtonian fluids in microchannel with patterned blocks
,”
Chem. Eng. J.
191
,
132
140
(
2012
).
23.
T. M.
Squires
and
M. Z.
Bazant
, “
Induced-charge electro-osmosis
,”
J. Fluid Mech.
509
,
217
252
(
2004
).
24.
H.
Feng
,
T. N.
Wong
, and
Marcos
, “
Pair interactions in induced charge electrophoresis of conducting cylinders
,”
Int. J. Heat Mass Transfer
88
,
674
683
(
2015
).
25.
H.
Feng
and
T. N.
Wong
, “
Pair interactions between conducting and non-conducting cylinders under uniform electric field
,”
Chem. Eng. Sci.
142C
,
12
22
(
2016
).
26.
C.
Canpolat
,
S.
Qian
, and
A.
Beskok
, “
Micro-piv measurements of induced-charge electro-osmosis around a metal rod
,”
Microfluid. Nanofluid.
14
,
153
162
(
2013
).
27.
C.
Peng
,
I.
Lazo
,
S. V.
Shiyanovskii
, and
O. D.
Lavrentovich
, “
Induced-charge electro-osmosis around metal and janus spheres in water: Patterns of flow and breaking symmetries
,”
Phys. Rev. E
90
,
051002
(
2014
).
28.
Z.
Wu
and
D.
Li
, “
Micromixing using induced-charge electrokinetic flow
,”
Electrochim. Acta
53
,
5827
5835
(
2008
).
29.
C. K.
Harnett
,
J.
Templeton
,
K. A.
Dunphy-Guzman
,
Y. M.
Senousy
, and
M. P.
Kanouff
, “
Model based design of a microfluidic mixer driven by induced charge electroosmosis
,”
Lab Chip
8
,
565
572
(
2008
).
30.
M.
Jain
,
A.
Yeung
, and
K.
Nandakumar
, “
Efficient micromixing using induced-charge electroosmosis
,”
J. Microelectromech. Syst.
18
,
376
384
(
2009
).
31.
Y.
Daghighi
and
D.
Li
, “
Numerical study of a novel induced-charge electrokinetic micro-mixer
,”
Anal. Chim. Acta
763
,
28
37
(
2013
).
32.
H.
Aref
, “
Stirring by chaotic advection
,”
J. Fluid Mech.
143
,
1
21
(
1984
).
33.
H.
Aref
and
S.
Balachandar
, “
Chaotic advection in a stokes flow
,”
Phys. Fluids
29
,
3515
3521
(
1986
).
34.
J.
Chaiken
,
C.
Chu
,
M.
Tabor
, and
Q.
Tan
, “
Lagrangian turbulence and spatial complexity in a stokes flow
,”
Phys. Fluids
30
,
687
694
(
1987
).
35.
S. W.
Jones
and
H.
Aref
, “
Chaotic advection in pulsed source–sink systems
,”
Phys. Fluids
31
,
469
485
(
1988
).
36.
T. J.
Kaper
and
S.
Wiggins
, “
An analytical study of transport in stokes flows exhibiting large-scale chaos in the eccentric journal bearing
,”
J. Fluid Mech.
253
,
211
243
(
1993
).
37.
H.
Aref
, “
The development of chaotic advection
,”
Phys. Fluids
14
,
1315
1325
(
2002
).
38.
A. D.
Stroock
,
S. K.
Dertinger
,
A.
Ajdari
,
I.
Mezić
,
H. A.
Stone
, and
G. M.
Whitesides
, “
Chaotic mixer for microchannels
,”
Science
295
,
647
651
(
2002
).
39.
M. A.
Stremler
and
B. A.
Cola
, “
A maximum entropy approach to optimal mixing in a pulsed source–sink flow
,”
Phys. Fluids
18
,
011701
(
2006
).
40.
D. M.
Fries
and
P. R.
von Rohr
, “
Liquid mixing in gas–liquid two-phase flow by meandering microchannels
,”
Chem. Eng. Sci.
64
,
1326
1335
(
2009
).
41.
J.-L.
Thiffeault
, “
Using multiscale norms to quantify mixing and transport
,”
Nonlinearity
25
,
R1
(
2012
).
42.
H.
Zhao
and
H. H.
Bau
, “
Microfluidic chaotic stirrer utilizing induced-charge electro-osmosis
,”
Phys. Rev. E
75
,
066217
(
2007
).
43.
H. J.
Keh
,
K. D.
Horng
, and
J.
Kuo
, “
Boundary effects on electrophoresis of colloidal cylinders
,”
J. Fluid Mech.
231
,
211
228
(
1991
).
44.
G.
Jeffery
, “
The rotation of two circular cylinders in a viscous fluid
,”
Proc. R. Soc. London, Ser. A
101
,
169
174
(
1922
).
45.
K. T.
Chu
and
M. Z.
Bazant
, “
Nonlinear electrochemical relaxation around conductors
,”
Phys. Rev. E
74
,
011501
(
2006
).
46.
J.
Lyklema
,
Fundamentals of Interface and Colloid Science: Soft Colloids
(
Academic press
,
2005
), Vol.
5
.
47.
M.
Muradoglu
,
A.
Gnther
, and
H. A.
Stone
, “
A computational study of axial dispersion in segmented gas-liquid flow
,”
Phys. Fluids
19
,
072109
(
2007
).
48.
J. H.
Phelps
and
C. L.
Tucker
III
, “
Lagrangian particle calculations of distributive mixing: Limitations and applications
,”
Chem. Eng. Sci.
61
,
6826
6836
(
2006
).
49.
J. M.
Ottino
,
The Kinematics of Mixing: Stretching, Chaos, and Transport
(
Cambridge University Press
,
1989
), Vol.
3
.
50.
Y.
Takamura
,
H.
Onoda
,
H.
Inokuchi
,
S.
Adachi
,
A.
Oki
, and
Y.
Horiike
, “
Low-voltage electroosmosis pump and its application to on-chip linear stepping pneumatic pressure source
,” in
Micro Total Analysis Systems 2001
(
Springer
,
2001
), pp.
230
232
.
You do not currently have access to this content.