In the present study, we conduct unsteady three-dimensional simulations of flows around a helically twisted elliptic (HTE) cylinder at the Reynolds numbers of 100 and 3900, based on the free-stream velocity and square root of the product of the lengths of its major and minor axes. A parametric study is conducted for Re = 100 by varying the aspect ratio (AR) of the elliptic cross section and the helical spanwise wavelength (λ). Depending on the values of AR and λ, the flow in the wake contains the characteristic wavelengths of λ, 2λ, 6λ, or even longer than 60λ, showing a wide diversity of flows in the wake due to the shape change. The drag on the optimal (i.e., having lowest drag) HTE cylinder (AR = 1.3 and λ = 3.5d) is lower by 18% than that of the circular cylinder, and its lift fluctuations are zero owing to complete suppression of vortex shedding in the wake. This optimal HTE configuration reduces the drag by 23% for Re = 3900 where the wake is turbulent, showing that the HTE cylinder reduces the mean drag and lift fluctuations for both laminar and turbulent flows.

1.
H.
Choi
,
W.-P.
Jeon
, and
J.
Kim
, “
Control of flow over a bluff body
,”
Annu. Rev. Fluid Mech.
40
,
113
139
(
2008
).
2.
M.
Nishioka
and
H.
Sato
, “
Measurements of velocity distributions in the wake of a circular cylinder at low Reynolds numbers
,”
J. Fluid Mech.
65
,
97
112
(
1974
).
3.
P. K.
Stansby
, “
The effects of end plates on the base pressure coefficient of a circular cylinder
,”
Aeronaut. J.
78
,
36
(
1974
).
4.
P. W.
Bearman
, “
Investigation of the flow behind a two-dimensional model with a blunt trailing edge and fitted with splitter plates
,”
J. Fluid Mech.
21
,
241
255
(
1965
).
5.
J. H.
Gerrard
, “
The mechanics of the formation region of vortices behind bluff bodies
,”
J. Fluid Mech.
25
,
401
413
(
1966
).
6.
K.
Kwon
and
H.
Choi
, “
Control of laminar vortex shedding behind a circular cylinder using splitter plates
,”
Phys. Fluids
8
,
479
486
(
1996
).
7.
C. J.
Wood
, “
The effect of base bleed on a periodic wake
,”
J. R. Aeronaut. Soc.
68
,
477
(
1964
).
8.
P. W.
Bearman
, “
The effect of base bleed on the flow behind a two-dimensional model with a blunt trailing edge
,”
Aeronaut. Q.
18
,
207
224
(
1967
).
9.
P. J.
Strykowski
and
K. R.
Sreenivasan
, “
On the formation and suppression of vortex ‘shedding’ at low Reynolds numbers
,”
J. Fluid Mech.
218
,
71
107
(
1990
).
10.
C.
Dalton
,
Y.
Xu
, and
J. C.
Owen
, “
The suppression of lift on a circular cylinder due to vortex shedding at moderate Reynolds numbers
,”
J. Fluids Struct.
15
,
617
628
(
2001
).
11.
C.
Min
and
H.
Choi
, “
Suboptimal feedback control of vortex shedding at low Reynolds numbers
,”
J. Fluid Mech.
401
,
123
156
(
1999
).
12.
D.
Son
,
S.
Jeon
, and
H.
Choi
, “
A proportional-integral-differential control of flow over a circular cylinder
,”
Philos. Trans. R. Soc., A
369
,
1540
1555
(
2011
).
13.
J.
Kim
and
H.
Choi
, “
Distributed forcing of flow over a circular cylinder
,”
Phys. Fluids
17
,
033103
(
2005
).
14.
M.
Schumm
,
E.
Berger
, and
P. A.
Monkewitz
, “
Self-excited oscillations in the wake of two-dimensional bluff bodies and their control
,”
J. Fluid Mech.
271
,
17
53
(
1994
).
15.
Y.
Hwang
,
J.
Kim
, and
H.
Choi
, “
Stabilization of absolute instability in spanwise wavy two-dimensional wakes
,”
J. Fluid Mech.
727
,
346
378
(
2013
).
16.
M.
Tanner
, “
A method of reducing the base drag of wings with blunt trailing edges
,”
Aeronaut. Q.
23
,
15
23
(
1972
).
17.
O.
Rodriguez
, “
Base drag reduction by the control of the three-dimensional unsteady vortical structures
,”
Exp. Fluids
11
,
218
226
(
1991
).
18.
M. S.
Petrusma
and
S. L.
Gai
, “
The effect of geometry on the base pressure recovery of segmented blunt trailing edges
,”
Aeronaut. J.
98
,
267
274
(
1994
).
19.
N.
Tombazis
and
P. W.
Bearman
, “
A study of three-dimensional aspects of vortex shedding from a bluff body with a mild geometric disturbance
,”
J. Fluid Mech.
330
,
85
112
(
1997
).
20.
R. M.
Darekar
and
S. J.
Sherwin
, “
Flow past a square-section cylinder with a wavy stagnation face
,”
J. Fluid Mech.
426
,
263
295
(
2001
).
21.
P. W.
Bearman
and
J. C.
Owen
, “
Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines
,”
J. Fluids Struct.
12
,
123
130
(
1998
).
22.
H.
Park
,
D.
Lee
,
W.-P.
Jeon
,
S.
Hahn
,
J.
Kim
,
J.
Kim
,
J.
Choi
, and
H.
Choi
, “
Drag reduction in flow over a two-dimensional bluff body with a blunt trailing edge using a new passive device
,”
J. Fluid Mech.
563
,
389
414
(
2006
).
23.
J. C.
Owen
,
A. A.
Szewczyk
, and
P. W.
Bearman
, “
Suppression of Karman vortex shedding
,”
Phys. Fluids
12
,
S9
(
2000
).
24.
J.
Yoon
,
J.
Kim
, and
H.
Choi
, “
Control of laminar vortex shedding behind a circular cylinder using tabs
,”
J. Mech. Sci. Technol.
28
,
1721
1725
(
2014
).
25.
M. M.
Zdravkovich
, “
Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding
,”
J. Wind Eng. Ind. Aerodyn.
7
,
145
189
(
1981
).
26.
A.
Ahmed
and
B.
Bays-Muchmore
, “
Transvere flow over a wavy cylinder
,”
Phys. Fluids A
4
,
1959
1967
(
1992
).
27.
K.
Lam
and
Y. F.
Lin
, “
Effects of wavelength and amplitude of a wavy cylinder in cross-flow at low Reynolds numbers
,”
J. Fluid Mech.
620
,
195
220
(
2009
).
28.
J. C.
Owen
,
P. W.
Bearman
, and
A. A.
Szewczyk
, “
Passive control of VIV with drag reduction
,”
J. Fluids Struct.
15
,
597
605
(
2001
).
29.
J. H.
Jung
and
H. S.
Yoon
, “
Large eddy simulation of flow over a twisted cylinder in subcritical Reynolds number
,”
J. Fluid Mech.
759
,
579
611
(
2014
).
30.
S. A.
Etnier
and
S.
Vogel
, “
Reorientation of daffodil (Narcissus: Amaryllidaceae) flowers in wind: Drag reduction and torsional flexibility
,”
Am. J. Bot.
87
,
29
32
(
2000
).
31.
W.
Hanke
,
M.
Witte
,
L.
Miersch
,
M.
Brede
,
J.
Oeffner
,
M.
Michael
,
F.
Hanke
,
A.
Leder
, and
G.
Dehnhardt
, “
Harbor seal vibrissa morphology suppresses vortex induced vibrations
,”
J. Exp. Biol.
213
,
2665
2672
(
2010
).
32.
W.
Kim
,
J.
Lee
, and
H.
Choi
, “
Flow past a helically twisted elliptic cylinder
,” in
Proceedings of the 8th KSME-JSME Thermal and Fluids Engineering Conference
,
Songdo, Incheon
,
18-21 March 2012
, GSF28–008.
33.
K.
Lam
and
Y. F.
Lin
, “
Large eddy simulation of flow around wavy cylinders at a subcritical Reynolds number
,”
Int. J. Heat Fluid Flow
29
,
1071
1088
(
2008
).
34.
J.
Kim
,
D.
Kim
, and
H.
Choi
, “
An immersed-boundary finite-volume method for simulations of flow in complex geometries
,”
J. Comput. Phys.
171
,
132
150
(
2001
).
35.
N.
Park
,
S.
Lee
,
J.
Lee
, and
H.
Choi
, “
A dynamic subgrid-scale eddy viscosity model with a global model coefficient
,”
Phys. Fluids
18
,
125109
(
2006
).
36.
J.
Lee
,
H.
Choi
, and
N.
Park
, “
Dynamic global model for large eddy simulation of transient flow
,”
Phys. Fluids
22
,
075106
(
2010
).
37.
P. R.
Spalart
,
R. D.
Moser
, and
M. M.
Rosers
, “
Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions
,”
J. Comput. Phys.
96
,
297
324
(
1991
).
38.
J.
Son
and
T. J.
Hanratty
, “
Velocity gradients at the wall for flow around a cylinder at Reynolds numbers from 5 × 103 to 105
,”
J. Fluid Mech.
35
,
353
368
(
1969
).
39.
C.
Norberg
, “
Effects of Reynolds number and a low-intensity free stream turbulence on the flow around a circular cylinder
,” Publication No. 87/2, Department of Applied Thermodynamics and Fluid Mechanics, Chalmers University of Technology, Sweden, 1987.
40.
C.
Norberg
, “
Fluctuating lift on a circular cylinder: Review and new measurements
,”
J. Fluids Struct.
17
,
57
96
(
2003
).
41.
A. G.
Kravchenko
and
P.
Moin
, “
Numerical studies of flow over a circular cylinder at ReD = 3900
,”
Phys. Fluids
12
,
403
417
(
2000
).
42.
D.
You
and
P.
Moin
, “
A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries
,”
Phys. Fluids
19
,
065110
(
2007
).
43.
K.
Lam
,
Y. F.
Lin
,
L.
Zou
, and
Y.
Liu
, “
Investigation of turbulent flow past a yawed wavy cylinder
,”
J. Fluids Struct.
26
,
1078
1097
(
2010
).
44.
J.
Park
,
K.
Kwon
, and
H.
Choi
, “
Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160
,”
KSME Int. J.
12
,
1200
1205
(
1998
).
45.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
94
(
1995
).
46.
J.
Kim
and
H.
Choi
, “
Large eddy simulation of a circular jet: Effect of inflow conditions on the near-field
,”
J. Fluid Mech.
620
,
383
411
(
2009
).
47.
K.
Lam
,
F. H.
Wang
, and
R. M. C.
So
, “
Three-dimensional nature of vortices in the near wake of a wavy cylinder
,”
J. Fluids Struct.
19
,
815
833
(
2004
).
You do not currently have access to this content.