We analyze the peristaltic motion of aqueous electrolytes altered by means of applied electric fields. Handling electrolytes in typical peristaltic channel material such as polyvinyl chloride and Teflon leads to the generation of a net surface charge on the channel walls, which attracts counter-ions and repels co-ions from the aqueous solution, thus leading to the formation of an electrical double layer—a region of net charges near the wall. We analyze the spatial distribution of pressure and wall shear stress for a continuous wave train and single pulse peristaltic wave in the presence of an electrical (electroosmotic) body force, which acts on the net charges in the electrical double layer. We then analyze the effect of the electroosmotic body force on the particle reflux as elucidated through the net displacement of neutrally buoyant particles in the flow as the peristaltic waves progress. The impact of combined electroosmosis and peristalsis on trapping of a fluid volume (e.g., bolus) inside the travelling wave is also discussed. The present analysis goes beyond the traditional analysis, which neglects the possibility of coupling the net pumping of fluids due to peristalsis and allows us to derive general expressions for the pressure drop and flow rate in order to set up a general framework for incorporating flow control and actuation by simultaneous peristalsis and application of electric fields to aqueous solutions. It is envisaged that the results presented here may act as a model for the design of lab-on-a-chip devices.

1.
M. Y.
Jaffrin
and
A. H.
Shapiro
, “
Peristaltic pumping
,”
Annu. Rev. Fluid Mech.
3
,
13
(
1971
).
2.
A.
Pal
,
K.
Indireshkumar
,
W.
Schwizer
,
B.
Abrahamsson
,
M.
Fried
, and
J. G.
Brasseur
, “
Gastric flow and mixing studied using computer simulation
,”
Proc. R. Soc. B
271
,
2587
(
2004
).
3.
K.
Davenport
,
A. G.
Timoney
, and
F. X.
Keeley
, in
1st Annual International Urolithiasis Research Symposium on Renal Stone Disease
(
AIP
,
2007
), pp.
243
252
.
4.
J.
Xie
,
J.
Shih
,
Q.
Lin
,
B.
Yang
, and
Y.-C.
Tai
, “
Surface micromachined electrostatically actuated micro peristaltic pump
,”
Lab Chip
4
,
495
(
2004
).
5.
L.
Yobas
,
K.-C.
Tang
,
S.-E.
Yong
, and
E.
Kye-Zheng Ong
, “
A disposable planar peristaltic pump for lab-on-a-chip
,”
Lab Chip
8
,
660
(
2008
).
6.
H. J.
Kim
,
D.
Huh
,
G.
Hamilton
, and
D. E.
Ingber
, “
Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow
,”
Lab Chip
12
,
2165
(
2012
).
7.
O. C.
Jeong
,
S. W.
Park
,
S. S.
Yang
, and
J. J.
Pak
, “
Fabrication of a peristaltic PDMS micropump
,”
Sens. Actuators, A
123-124
,
453
(
2005
).
8.
S. L.
Weinberg
,
E. C.
Eckstein
, and
A. H.
Shapiro
, “
An experimental study of peristaltic pumping
,”
J. Fluid Mech.
49
,
461
(
1971
).
9.
Y. C.
Fung
and
C. S.
Yih
, “
Peristaltic transport
,”
J. Appl. Mech.
35
,
669
(
1968
).
10.
J. C.
Burns
and
T.
Parkes
, “
Peristaltic motion
,”
J. Fluid Mech.
29
,
731
(
1967
).
11.
C.
Barton
and
S.
Raynor
, “
Peristaltic flow in tubes
,”
Bull. Math. Biophys.
30
,
663
(
1968
).
12.
A. H.
Shapiro
,
M. Y.
Jaffrin
, and
S. L.
Weinberg
, “
Peristaltic pumping with long wavelengths at low Reynolds number
,”
J. Fluid Mech.
37
,
799
(
1969
).
13.
M.
Li
and
J. G.
Brasseur
, “
Non-steady peristaltic transport in finite-length tubes
,”
J. Fluid Mech.
248
,
129
(
1993
).
14.
A. R.
Rao
and
S.
Usha
, “
Peristaltic transport of two immiscible viscous fluids in a circular tube
,”
J. Fluid Mech.
298
,
271
(
1995
).
15.
J. C.
Misra
and
S. K.
Pandey
, “
Peristaltic transport of blood in small vessels: Study of a mathematical model
,”
Comput. Math. Appl.
43
,
1183
(
2002
).
16.
V. P.
Srivastava
and
M.
Saxena
, “
A two-fluid model of non-Newtonian blood flow induced by peristaltic waves
,”
Rheol. Acta
34
,
406
(
1995
).
17.
S.
Usha
and
A.
Ramachandra Rao
, “
Peristaltic transport of two-layered power-law fluids
,”
J. Biomech. Eng.
119
,
483
(
1997
).
18.
J. C.
Misra
and
S. K.
Pandey
, “
Peristaltic transport of a non-Newtonian fluid with a peripheral layer
,”
Int. J. Eng. Sci.
37
,
1841
(
1999
).
19.
A. M.
Siddiqui
and
W. H.
Schwarz
, “
Peristaltic flow of a second-order fluid in tubes
,”
J. Non-Newtonian Fluid Mech.
53
,
257
(
1994
).
20.
D.
Tsiklauri
and
I.
Beresnev
, “
Non-Newtonian effects in the peristaltic flow of a Maxwell fluid
,”
Phys. Rev. E
64
,
036303
(
2001
).
21.
L. M.
Srivastava
and
V. P.
Srivastava
, “
Peristaltic transport of a non-Newtonian fluid: Applications to the vas deferens and small intestine
,”
Ann. Biomed. Eng.
13
,
137
(
1985
).
22.
H. A.
Stone
and
K. P.
Selverov
, “
Peristaltically driven channel flows with applications toward micromixing
,”
Phys. Fluids
13
,
1837
(
2001
).
23.
J. V.
Ramanamurthy
,
K. M.
Prasad
, and
V. K.
Narla
, “
Unsteady peristaltic transport in curved channels
,”
Phys. Fluids
25
,
091903
(
2013
).
24.
C.
Pozrikidis
, “
A study of peristaltic flow
,”
J. Fluid Mech.
180
,
515
(
1987
).
25.
M.
Yi
,
H. H.
Bau
, and
H.
Hu
, “
Peristaltically induced motion in a closed cavity with two vibrating walls
,”
Phys. Fluids
14
,
184
(
2002
).
26.
L. J.
Fauci
, “
Peristaltic pumping of solid particles
,”
Comput. Fluids
21
,
583
(
1992
).
27.
V.
Aranda
,
R.
Cortez
, and
L.
Fauci
, “
Stokesian peristaltic pumping in a three-dimensional tube with a phase-shifted asymmetry
,”
Phys. Fluids
23
,
081901
(
2011
).
28.
J.
Jiménez-Lozano
and
M.
Sen
, “
Particle dispersion in two-dimensional peristaltic flow
,”
Phys. Fluids
22
,
043303
(
2010
).
29.
J.
Teran
,
L.
Fauci
, and
M.
Shelley
, “
Peristaltic pumping and irreversibility of a Stokesian viscoelastic fluid
,”
Phys. Fluids
20
,
073101
(
2008
).
30.
F.
Blanchette
, “
The influence of suspended drops on peristaltic pumping
,”
Phys. Fluids
26
,
061902
(
2014
).
31.
J.
Voldman
, “
Electrical forces for microscale cell manipulation
,”
Annu. Rev. Biomed. Eng.
8
,
425
(
2006
).
32.
C.
Suscillon
,
O. D.
Velev
, and
V. I.
Slaveykova
, “
Alternating current-dielectrophoresis driven on-chip collection and chaining of green microalgae in freshwaters
,”
Biomicrofluidics
7
,
024109
(
2013
).
33.
L. T.
Shi
,
C. G.
Jiang
,
G. J.
Ma
, and
C. W.
Wu
, “
Electric field assisted manipulation of microdroplets on a superhydrophobic surface
,”
Biomicrofluidics
4
,
041101
(
2010
).
34.
S.
Li
,
M.
Li
,
K.
Bougot-Robin
,
W.
Cao
,
I.
Yeung Yeung Chau
,
W.
Li
, and
W.
Wen
, “
High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip
,”
Biomicrofluidics
7
,
024106
(
2013
).
35.
P. C. H.
Li
and
D. J.
Harrison
, “
Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects
,”
Anal. Chem.
69
,
1564
(
1997
).
36.
D.
Tripathi
and
O. A.
Bég
, “
A study on peristaltic flow of nanofluids: Application in drug delivery systems
,”
Int. J. Heat Mass Transfer
70
,
61
(
2014
).
37.
A. M.
Ghaemmaghami
,
M. J.
Hancock
,
H.
Harrington
,
H.
Kaji
, and
A.
Khademhosseini
, “
Biomimetic tissues on a chip for drug discovery
,”
Drug Discovery Today
17
,
173
(
2012
).
38.
B. J.
Kirby
and
E. F.
Hasselbrink
, “
Zeta potential of microfluidic substrates. I. Theory, experimental techniques, and effects on separations
,”
Electrophoresis
25
,
187
(
2004
).
39.
B. J.
Kirby
and
E. F.
Hasselbrink
, “
Zeta potential of microfluidic substrates. II. Data for polymers
,”
Electrophoresis
25
,
203
(
2004
).
40.
R. J.
Hunter
and
L. R.
White
,
Foundations of Colloid Science
(
Clarendon Press
,
1989
).
41.
J.
Chakraborty
and
S.
Chakraborty
,
Micro Smart Devices System
(
Springer
,
India
,
2014
), pp.
339
353
.
42.
J. H.
Masliyah
and
S.
Bhattacharjee
,
Electrokinetic and Colloid Transport Phenomena
(
John Wiley & Sons, Inc.
,
Hoboken, NJ, USA
,
2006
).
43.
S.
Chakraborty
, “
Augmentation of peristaltic microflows through electro-osmotic mechanisms
,”
J. Phys. D: Appl. Phys.
39
,
5356
(
2006
).
44.
F.
Carpi
,
C.
Menon
, and
D.
De Rossi
, “
Electroactive elastomeric actuator for all-polymer linear peristaltic pumps
,”
IEEE/ASME Trans. Mech.
15
,
460
(
2010
).
45.
J. G.
Smits
, in
Proceedings of Eighth University Microelectronics Symposium
(
IEEE
,
1989
), pp.
92
94
.
46.
J. W.
Judy
,
T.
Tamagawa
, and
D. L.
Polla
, in
Proceedings of IEEE Micro Electro Mechanical Systems
(
IEEE
,
1991
), pp.
182
186
.
47.
J. A.
Folta
,
N. F.
Raley
, and
E. W.
Hee
, in
IEEE Solid-State Sensor and Actuator Work on Technical Digest
(
IEEE
,
1991
), pp.
186
189
.
48.
H.
Mizoguchi
,
M.
Ando
,
T.
Mizuno
,
T.
Takagi
, and
N.
Nakajima
, in
Proceedings of IEEE Micro Electro Mechanical Systems
(
IEEE
,
1992
), pp.
31
36
.
49.
C.
Wang
,
Y.
Gao
,
N.-T.
Nguyen
,
T. N.
Wong
,
C.
Yang
, and
K. T.
Ooi
, “
Interface control of pressure-driven two-fluid flow in microchannels using electroosmosis
,”
J. Micromech. Microeng.
15
,
2289
(
2005
).
50.
U.
Tallarek
,
E.
Rapp
,
T.
Scheenen
,
E.
Bayer
, and
H.
Van As
, “
Electroosmotic and pressure-driven flow in open and packed capillaries: Velocity distributions and fluid dispersion
,”
Anal. Chem.
72
,
2292
(
2000
).
51.
N. A.
Polson
and
M. A.
Hayes
, “
Electroosmotic flow control of fluids on a capillary electrophoresis microdevice using an applied external voltage
,”
Anal. Chem.
72
,
1088
(
2000
).
52.
C.
Ericson
,
J.
Holm
,
T.
Ericson
, and
S.
Hjertén
, “
Electroosmosis- and pressure-driven chromatography in chips using continuous beds
,”
Anal. Chem.
72
,
81
(
2000
).
53.
P.
Dutta
,
A.
Beskok
, and
T. C.
Warburton
, “
Numerical simulation of mixed electroosmotic/pressure driven microflows
,”
Numer. Heat Transfer, Part A
41
,
131
(
2002
).
54.
P.
Dutta
and
A.
Beskok
, “
Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: Finite debye layer effects
,”
Anal. Chem.
73
,
1979
(
2001
).
55.
D.
Gillespie
and
S.
Pennathur
, “
Separation of ions in nanofluidic channels with combined pressure-driven and electro-osmotic flow
,”
Anal. Chem.
85
,
2991
(
2013
).
56.
H.
Bruus
,
Theoretical Microfluidics
(
Oxford University Press
,
London
,
2008
).
57.
B. J.
Kirby
,
Micro- and Nanoscale Fluid Mechanics
(
Cambridge University Press
,
2013
).
58.
M. A.
Roberts
,
J. S.
Rossier
,
P.
Bercier
, and
H.
Girault
, “
Uv laser machined polymer substrates for the development of microdiagnostic systems
,”
Anal. Chem.
69
,
1997
(
2035
).
59.
T. W.
Latham
,
Fluid Motions in a Peristaltic Pump
(
Massachusetts Institute of Technology
,
1966
).
60.
W.
Reinke
,
P. C.
Johnson
, and
P.
Gaehtgens
, “
Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter
,”
Circ. Res.
59
,
124
(
1986
).
61.
S.
Miyazaki
,
T.
Kawai
, and
M.
Araragi
, in
Proceedings of IEEE Micro Electro Mechanical Systems
(
IEEE
,
1991
), pp.
283
288
.
62.
S.
Levine
,
J.
Marriott
,
G.
Neale
, and
N.
Epstein
, “
Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials
,”
J. Colloid Interface Sci.
52
,
136
(
1975
).
63.
H.
Bruus
,
Theoretical Microfluidics
(
Oxford University Press
,
New York
,
2008
).
64.
L. G.
Leal
,
Advanced Transport Phenomena
(
Cambridge University Press
,
Cambridge
,
2007
).
65.
Elsevier Science,
P. K.
Kundu
and
I. M.
Cohen
,
Fluid Mechanics
(
New Delhi
,
2012
).
66.
J.
Newman
and
K. E.
Thomas-Alyea
,
Electrochemical Systems
, 3rd ed. (
John Wiley & Sons
,
Hoboken, NJ, USA
,
2004
).
You do not currently have access to this content.