Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOS named “Noble Abel stiffened gas,” this formulation being a significant improvement of the popular “Stiffened Gas (SG)” EOS. It is a combination of the so-called “Noble-Abel” and “stiffened gas” equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.

1.
H.
Lund
, “
A hierarchy of relaxation models for two-phase flow
,”
SIAM J. Appl. Math.
72
,
1713
-
1741
(
2012
).
2.
S.
Le Martelot
,
R.
Saurel
, and
O.
Le Métayer
, “
Steady one-dimensional nozzle flow solutions of liquid-gas mixtures
,”
J. Fluid Mech.
737
,
146
-
175
(
2013
).
3.
S.
Le Martelot
,
R.
Saurel
, and
B.
Nkonga
, “
Towards the direct numerical simulation of nucleate boiling flows
,”
Int. J. Multiphase Flow
66
,
62
-
78
(
2014
).
4.
G.
Allaire
,
S.
Clerc
, and
S.
Kokh
, “
A five-equation model for the simulation of interfaces between compressible fluids
,”
J. Comput. Phys.
181
,
577
-
616
(
2002
).
5.
A. K.
Kapila
,
R.
Menikoff
,
J. B.
Bdzil
,
S. F.
Son
, and
D. S.
Stewart
, “
Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations
,”
Phys. Fluids
13
,
3002
-
3024
(
2001
).
6.
A.
Murrone
and
H.
Guillard
, “
A five equation reduced model for compressible two phase flow problems
,”
J. Comput. Phys.
202
,
664
-
698
(
2005
).
7.
R.
Saurel
,
F.
Petitpas
, and
R.
Abgrall
, “
Modelling phase transition in metastable liquids: Application to cavitating and flashing flows
,”
J. Fluid Mech.
607
,
313
-
350
(
2008
).
8.
R.
Saurel
,
F.
Petitpas
, and
R. A.
Berry
, “
Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures
,”
J. Comput. Phys.
228
,
1678
-
1712
(
2009
).
9.
R.
Abgrall
and
R.
Saurel
, “
Discrete equations for physical and numerical compressible multiphase mixtures
,”
J. Comput. Phys.
186
,
361
-
396
(
2003
).
10.
M. R.
Baer
and
J. W.
Nunziato
, “
A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials
,”
Int. J. Multiphase Flow
12
,
861
-
889
(
1986
).
11.
J. B.
Bdzil
,
R.
Menikoff
,
S. F.
Son
,
A. K.
Kapila
, and
D. S.
Stewart
, “
Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues
,”
Phys. Fluids
11
,
378
-
402
(
1999
).
12.
A.
Chinnayya
,
E.
Daniel
, and
R.
Saurel
, “
Modelling detonation waves in heterogeneous energetic materials
,”
J. Comput. Phys.
196
,
490
-
538
(
2004
).
13.
A. K.
Kapila
,
S. F.
Son
,
J. B.
Bdzil
,
R.
Menikoff
, and
D. S.
Stewart
, “
Two-phase modeling of DDT: Structure of the velocity-relaxation zone
,”
Phys. Fluids
9
,
3885
-
3897
(
1997
).
14.
O.
Le Métayer
,
J.
Massoni
, and
R.
Saurel
, “
Modelling evaporation fronts with reactive Riemann solvers
,”
J. Comput. Phys.
205
,
567
-
610
(
2005
).
15.
R.
Saurel
,
S.
Gavrilyuk
, and
F.
Renaud
, “
A multiphase model with internal degrees of freedom: Application to shock-bubble interaction
,”
J. Fluid Mech.
495
,
283
-
321
(
2003
).
16.
R.
Saurel
and
O.
LeMetayer
, “
A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation
,”
J. Fluid Mech.
431
,
239
-
271
(
2001
).
17.
O.
Le Métayer
,
J.
Massoni
, and
R.
Saurel
, “
Elaborating equations of state of a liquid and its vapor for two-phase flow models
,”
Int. J. Therm. Sci.
43
,
265
-
276
(
2004
).
18.
R. C.
Reid
,
J. M.
Prausnitz
, and
B. E.
Poling
,
The Properties of Gases and Liquids
, 4th ed. (
McGraw-Hill
,
1987
).
19.
A. A.
Frost
and
D. R.
Kalkwarf
, “
A semi-empirical equation for the vapor pressure of liquids as a function of temperature
,”
J. Chem. Phys.
21
,
264
-
267
(
1953
).
20.
D.
Furfaro
and
R.
Saurel
, “
Modeling droplet phase change in the presence of a multi-component gas mixture
,”
Appl. Math. Comput.
272
(
2
),
518
-
541
(
2016
).
21.
S. K.
Godunov
,
A. V.
Zabrodin
,
M. I.
Ivanov
,
A. N.
Kraiko
, and
G. P.
Prokopov
, “
Numerical solution of multidimensional problems of gas dynamics
,”
Moscow Izd. Nauka
1
,
1
-
400
(
1976
).
22.
F.
Harlow
and
A.
Amsden
, “
Fluid dynamics
,”
Monograph LA-4700
,
Los Alamos National Laboratory
, Los Alamos, NM,
1971
.
23.
R.
Menikoff
and
B. J.
Plohr
, “
The Riemann problem for fluid flow of real materials
,”
Rev. Mod. Phys.
61
,
75
-
130
(
1989
).
24.
G. A.
Hirn
, “Exposition analytique et expérimentale de la théorie mécanique de la chaleur,” (Gauthier-Villars, 1865) (in French).
25.
A.
Brin
, “Contribution à l’étude de la couche capillaire et de la pression osmotique,” Thèse d’Etat, Faculté des Sciences de l’Université de Paris, 1956 (in French).
26.
C. L.
Mader
,
Numerical Modeling of Detonations
(
University of California Press
,
Los Angeles, CA
,
1979
).
27.
O.
Heuzé
, “
Equations of state of detonation products: Influence of the repulsive intermolecular potential
,”
Phys. Rev. A
34
(
1
),
428
(
1986
).
28.
E. L.
Lee
,
H. C.
Hornig
, and
J. W.
Kury
, “Adiabatic expansion of high explosive detonation products,” UCRL 50422, California University, Lawrence Radiation Laboratory, Livermore, 1968.
29.
R.
Saurel
,
P.
Boivin
, and
O.
Le Métayer
, “
A general formulation for cavitating, boiling and evaporating flows
,”
Comput. Fluids
128
,
53
-
64
(
2016
).
30.
J. P.
Perez
and
A.
Romulus
, Thermodynamique: Fondements et applications, Masson, 1993 (in French).
31.
J. R.
Simões-Moreira
, “
Adiabatic evaporation waves
,” Ph.D. thesis,
Rensselaer Polytechnic Institute
, Troy, NY,
1994
.
32.
R.
Oldenbourg
,
Properties of Water and Steam in SI-Units
(
Springer-Verlag
,
Berlin, Heidelberg, New York
,
1989
).
33.
See http://webbook.nist.gov/chemistry/fluid/ for information about oxygen experimental thermodynamic data.
34.
J. P.
Cocchi
and
R.
Saurel
, “
A Riemann problem based method for the resolution of compressible multimaterial flows
,”
J. Comput. Phys.
137
,
265
-
298
(
1997
).
35.
B. J.
Plohr
, “
Shockless acceleration of thin plates modeled by a tracked random choice method
,”
AIAA J.
26
,
470
-
478
(
1988
).
36.
O.
Le Métayer
,
J.
Massoni
, and
R.
Saurel
, “
Dynamic relaxation processes in compressible multiphase flows. Application to evaporation phenomena
,”
ESAIM Proc.
40
,
103
-
123
(
2013
).
You do not currently have access to this content.