Liquid films flowing down the underside of inclined plates are subject to the interaction between the hydrodynamic and the Rayleigh-Taylor (R-T) instabilities causing a patterned and wavy topology at the free surface. The R-T instability results from the denser liquid film being located above a less dense ambient gas, and deforming into an array of droplets, which eventually drip if no saturation mechanism arises. Such saturation mechanism can actually be provided by a fluid motion along the inclined plate. Using a weighted integral boundary layer model, this study examines the critical inclination angle, measured from the vertical, that separates regimes of absolute and convective instability. If the instability is of absolute type, growing perturbations stay localized in space potentially leading to dripping. If the instability is of convective type, growing perturbations move downwards the inclined plate, forming waves and eventually, but not necessarily, droplets. Remarkably, there is a minimum value of the critical angle below which a regime of absolute instability cannot exist. This minimum angle decreases with viscosity: it is about 85° for water, about 70° for silicon oil 20 times more viscous than water, and reaches a limiting value for liquid with a viscosity larger than about 1000 times the one of water. It results that for any fluid, absolute dripping can only exist for inclination angle (taken from the vertical) larger than 57.4°.

1.
H.-C.
Chang
and
E.
Demekhin
, in
Complex Wave Dynamics on Thin Films
, edited by
D.
Möbius
and
R.
Miller
(
Elsevier
,
Amsterdam
,
2002
).
2.
S. V.
Alekseenko
,
V. E.
Nakoryakov
, and
B. G.
Pokusaev
, in
Wave Flow of Liquid Films
, edited by
T.
Fukano
(
Begell House
,
New York
,
1994
).
3.
S.
Kalliadasis
,
C.
Ruyer-Quil
,
B.
Scheid
, and
M.
Velarde
,
Falling Liquid Films
(
Spinger-Verlag
,
2012
), p.
440
.
4.
G. F.
Dietze
,
A.
Leefken
, and
R.
Kneer
, “
Investigation of the backflow phenomenon in falling liquid films
,”
J. Fluid Mech.
595
,
435
459
(
2008
).
5.
W.
Rohlfs
and
B.
Scheid
, “
Phase diagram for the onset of circulating waves and flow reversal in inclined falling films
,”
J. Fluid Mech.
763
,
322
351
(
2015
).
6.
J.
Liu
,
J. D.
Paul
, and
J. P.
Gollub
, “
Measurements of primary instability of film flows
,”
J. Fluid Mech.
250
,
69
101
(
1993
).
7.
Lord
Rayleigh
, “
Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density
,”
Proc. London Math. Soc.
s1-14
,
170
177
(
1883
).
8.
S.
Chandrasekhar
,
Hydrodynamics and Hydromagnetic Stability
(
Oxford University Press
,
1961
).
9.
P.-T.
Brun
,
A.
Damiano
,
P.
Rieu
,
G.
Balestra
, and
F.
Gallaire
, “
Rayleigh-Taylor instability under an inclined plane
,”
Phys. Fluids
27
,
084107
(
2015
).
10.
A. L.
Frenkel
and
D.
Halpern
, “
On saturation of Rayleigh-Taylor instability
,” in
IUTAM Symposium on Nonlinear Waves in Multi-Phase Flow
,
Fluid Mechanics and Its Applications
Vol.
57
, edited by
H.-C.
Chang
(
Springer
,
Netherlands
,
2000
), pp.
69
79
.
11.
M.
Fermigier
,
L.
Limat
,
J. E.
Wesfreid
,
P.
Boudinet
, and
C.
Quilliet
, “
Two-dimensional patterns in Rayleigh-Taylor instability of a thin layer
,”
J. Fluid Mech.
236
,
349
383
(
1992
).
12.
G. H.
Wolf
, “
Dynamic stabilization of interchange instability of a liquid-gas interface
,”
Phys. Rev. Lett.
24
,
444
446
(
1970
).
13.
E.
Talib
and
A.
Juel
, “
Instability of a viscous interface under horizontal oscillation
,”
Phys. Fluids
19
,
092102
(
2007
).
14.
N. A.
Bezdenezhnykh
,
V. A.
Briskman
,
A. A.
Cherepanov
, and
M. T.
Sharov
, “
Control of the stability of liquid surfaces by means of variable fields
,”
Fluid Mech. - Sov. Res.
15
,
11
32
(
1986
).
15.
B. K.
Kopbosynov
and
V. V.
Pukhnachev
, “
Thermocapillary flow in thin liquid films
,”
Fluid Mech. - Sov. Res.
95
,
15
(
1986
).
16.
R. J.
Deissler
and
A.
Oron
, “
Stable localized patterns in thin liquid films
,”
Phys. Rev. Lett.
68
,
2948
2951
(
1992
).
17.
A.
Alexeev
and
A.
Oron
, “
Suppression of the Rayleigh-Taylor instability of thin liquid films by the Marangoni effect
,”
Phys. Fluids
19
,
082101
(
2007
).
18.
P.
Trinh
,
H.
Kim
,
N.
Hammoud
,
P.
Howell
,
S.
Chapman
, and
H.
Stone
, “
Curvature suppresses the Rayleigh-Taylor instability
,”
Phys. Fluids
26
,
051704
(
2014
).
19.
A. J.
Babchin
,
A. L.
Frenkel
,
B. G.
Levich
, and
G. I.
Sivashinsky
, “
Nonlinear saturation of Rayleigh-Taylor instability in thin films
,”
Phys. Fluids
26
,
3159
3161
(
1983
).
20.
T.-S.
Lin
,
L.
Kondic
, and
A.
Filippov
, “
Thin films flowing down inverted substrates: Three-dimensional flow
,”
Phys. Fluids
24
,
022105
(
2012
).
21.
S. J.
Leib
and
M. E.
Goldstein
, “
Convective and absolute instability of a viscous liquid jet
,”
Phys. Fluids
29
,
952
954
(
1986
).
22.
J.
Eggers
and
E.
Villermaux
, “
Physics of liquid jets
,”
Rep. Prog. Phys.
71
,
036601
(
2008
).
23.
C.
Ruyer-Quil
and
P.
Manneville
, “
Improved modeling of flows down inclined planes
,”
Eur. Phys. J. B
15
,
357
369
(
2000
).
24.
P.
Howell
, “
Models for thin viscous sheets
,”
Eur. J. Appl. Math.
7
,
321
343
(
1996
).
25.
C.
Duprat
,
C.
Ruyer-Quil
,
S.
Kalliadasis
, and
F.
Giorgiutti-Dauphiné
, “
Absolute and convective instabilities of a viscous film flowing down a vertical fiber
,”
Phys. Rev. Lett.
98
,
244502
(
2007
).
26.
C.
Ruyer-Quil
and
P.
Manneville
, “
Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations
,”
Phys. Fluids (1994-present)
14
,
170
183
(
2002
).
27.
F.
Charru
,
Hydrodynamics Instability
(
Cambridge University Press
,
2011
).
28.
H.-C.
Chang
, “
Wave evolution on a falling film
,”
Annu. Rev. Fluid Mech.
26
,
103
136
(
1994
).
29.
P.
Huerre
and
P. A.
Monkewitz
, “
Local and global instabilities in spatially developing flows
,”
Annu. Rev. Fluid Mech.
22
,
473
537
(
1990
).
30.
R.
Briggs
,
Electron-Stream Interaction with Plasmas
(
MIT Press
,
Cambridge
,
1964
).
31.
J. J.
Healey
, “
On the relation between the viscous and inviscid absolute instabilities of the rotating-disk boundary layer
,”
J. Fluid Mech.
511
,
179
199
(
2004
).
32.
J.
Healey
, “
Destabilizing effects of confinement on homogeneous mixing layers
,”
J. Fluid Mech.
623
,
241
(
2009
).
33.
M.
Juniper
, “
The effect of confinement on the stability of two-dimensional shear flows
,”
J. Fluid Mech.
565
,
171
(
2006
).
34.
C.
Leclercq
,
B.
Pier
, and
J.
Scott
, “
Absolute instabilities in eccentric Taylor-Couette-Poiseuille flow
,”
J. Fluid Mech.
741
,
543
566
(
2014
).
35.
S.
Popinet
, “
An accurate adaptive solver for surface-tension-driven interfacial flows
,”
J. Comput. Phys.
228
,
5838
5866
(
2009
).
36.
I.
Delbende
and
J. M.
Chomaz
, “
Nonlinear convective/absolute instabilities in parallel two-dimensional wakes
,”
Phys. Fluids
10
,
2724
(
1998
).
You do not currently have access to this content.