This paper uses asymptotic techniques to find the shape of a two dimensional liquid bridge suspended between two vertical walls. We model the equilibrium bridge shape using the Laplace–Young equation. We use the Bond number as a small parameter to deduce an asymptotic solution which is then compared with numerical solutions. The perturbation approach demonstrates that equilibrium is only possible if the contact angle lies within a hysteresis interval and the analysis relates the width of this interval to the Bond number. This result is verified by comparison with a global force balance. In addition, we examine the quasi-static evolution of such a two dimensional bridge.

1.
F. V.
Atkinson
and
L. A.
Peletier
, “
Bounds for vertical points of solutions of prescribed mean curvature equations
,”
Proc. Roy. Soc. Edinburgh: Sect. A
112
,
15
32
(
1989
).
2.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
1967
).
3.
R.
Bhatnagar
and
R.
Finn
, “
Attractions and repulsions of parallel plates partially immersed in a liquid bath: III
,”
Boundary Value Probl.
2013
(
1
),
277
.
4.
E. A.
Boucher
, “
Capillarity phenomena: Properties of systems with fluid/fluid interface
,”
Rep. Prog. Phys.
43
,
497
-
546
(
1980
).
5.
P.
Concus
and
R.
Finn
, “
The shape of a pendent liquid drop
,”
Philos. Trans. R. Soc., A
292
,
307
340
(
1978
).
6.
R.
Finn
,
Equilibrium Capillary Surfaces
,
Grundlehren der Mathematischen Wissenschaften
Vol.
284
(
Springer-Verlag
,
New York
,
1986
).
7.
R.
Finn
, “
On Young’s paradox, and the attractions of immersed parallel plates
,”
Phys. Fluids
22
,
017103
(
2010
).
8.
R.
Finn
and
D.
Lu
, “
Mutual attraction of partially immersed plates
,”
J. Math. Fluid Mech.
15
,
273
-
301
(
2013
).
9.
P. G.
de Gennes
,
F.
Brochard-Wyart
, and
David
Quéré
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(
Springer
,
2004
).
10.
I.
Martinez
and
J. M.
Perales
, “
Liquid bridge stability data
,”
J. Cryst. Growth
78
,
369
-
378
(
1986
).
11.
T. J.
McCarthy
and
L.
Gao
, “
Contact angle hysteresis explained
,”
Langmuir
22
,
6234
-
6237
(
2006
).
12.
S. B. G.
O’Brien
, “
On the shape of small sessile and pendant drops by singular perturbation techniques
,”
J. Fluid Mech.
233
,
519
539
(
1991
).
13.
S. B. G.
O’Brien
, “
Asymptotic solutions for double pendant and extended sessile drops
,”
Q. Appl. Math.
52
,
43
48
(
1994
); available at http://www.jstor.org/stable/43637970.
14.
S. B. G.
O’Brien
, “
Asymptotics of a pinhole
,”
J. Colloid Interface Sci.
191
,
514
516
(
1997
).
15.
S. B. G.
O’Brien
, “
Asymptotics of a series of pendant drops
,”
SIAM J. Appl. Math.
62
,
1569
1580
(
2002
).
16.
S. B. G.
O’Brien
, “
Asymptotics of self intersecting solutions of the pendant drop equations
,”
Z. Angew. Math. Mech.
84
,
158
170
(
2004
).
17.
S. B. G.
O’Brien
and
B. H. A. A.
van den Brule
, “
Shape of a small sessile drop and the determination of contact angle
,”
J. Chem. Soc., Faraday Trans.
87
,
1579
1583
(
1991
).
18.
C.
Pozrikidis
, “
Stability of sessile and pendant liquid drops
,”
J. Eng. Math.
72
,
1
-
20
(
2012
).
19.
L. A.
Slobozhanin
,
J.
Meseguer
, and
J. M.
Perales
, “
A review on the stability of liquid bridges
,”
Adv. Space Res.
16
,
5
-
14
(
1995
).
20.
W.
Thomson (Lord Kelvin)
, “
Capillary attraction
,”
Nature
34
,
270
369
, (
1886
).
21.
T.
Young
, “
An essay on the cohesion of fluids
,”
Philos. Trans. R. Soc. London
95
,
65
-
87
(
1805
).
You do not currently have access to this content.