This paper uses asymptotic techniques to find the shape of a two dimensional liquid bridge suspended between two vertical walls. We model the equilibrium bridge shape using the Laplace–Young equation. We use the Bond number as a small parameter to deduce an asymptotic solution which is then compared with numerical solutions. The perturbation approach demonstrates that equilibrium is only possible if the contact angle lies within a hysteresis interval and the analysis relates the width of this interval to the Bond number. This result is verified by comparison with a global force balance. In addition, we examine the quasi-static evolution of such a two dimensional bridge.
REFERENCES
1.
F. V.
Atkinson
and L. A.
Peletier
, “Bounds for vertical points of solutions of prescribed mean curvature equations
,” Proc. Roy. Soc. Edinburgh: Sect. A
112
, 15
–32
(1989
).2.
G. K.
Batchelor
, An Introduction to Fluid Dynamics
(Cambridge University Press
, 1967
).3.
R.
Bhatnagar
and R.
Finn
, “Attractions and repulsions of parallel plates partially immersed in a liquid bath: III
,” Boundary Value Probl.
2013
(1
), 277
.4.
E. A.
Boucher
, “Capillarity phenomena: Properties of systems with fluid/fluid interface
,” Rep. Prog. Phys.
43
, 497
-546
(1980
).5.
P.
Concus
and R.
Finn
, “The shape of a pendent liquid drop
,” Philos. Trans. R. Soc., A
292
, 307
–340
(1978
).6.
R.
Finn
, Equilibrium Capillary Surfaces
, Grundlehren der Mathematischen Wissenschaften
Vol. 284
(Springer-Verlag
, New York
, 1986
).7.
R.
Finn
, “On Young’s paradox, and the attractions of immersed parallel plates
,” Phys. Fluids
22
, 017103
(2010
).8.
R.
Finn
and D.
Lu
, “Mutual attraction of partially immersed plates
,” J. Math. Fluid Mech.
15
, 273
-301
(2013
).9.
P. G.
de Gennes
, F.
Brochard-Wyart
, and David
Quéré
, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(Springer
, 2004
).10.
I.
Martinez
and J. M.
Perales
, “Liquid bridge stability data
,” J. Cryst. Growth
78
, 369
-378
(1986
).11.
T. J.
McCarthy
and L.
Gao
, “Contact angle hysteresis explained
,” Langmuir
22
, 6234
-6237
(2006
).12.
S. B. G.
O’Brien
, “On the shape of small sessile and pendant drops by singular perturbation techniques
,” J. Fluid Mech.
233
, 519
–539
(1991
).13.
S. B. G.
O’Brien
, “Asymptotic solutions for double pendant and extended sessile drops
,” Q. Appl. Math.
52
, 43
–48
(1994
); available at http://www.jstor.org/stable/43637970.14.
S. B. G.
O’Brien
, “Asymptotics of a pinhole
,” J. Colloid Interface Sci.
191
, 514
–516
(1997
).15.
S. B. G.
O’Brien
, “Asymptotics of a series of pendant drops
,” SIAM J. Appl. Math.
62
, 1569
–1580
(2002
).16.
S. B. G.
O’Brien
, “Asymptotics of self intersecting solutions of the pendant drop equations
,” Z. Angew. Math. Mech.
84
, 158
–170
(2004
).17.
S. B. G.
O’Brien
and B. H. A. A.
van den Brule
, “Shape of a small sessile drop and the determination of contact angle
,” J. Chem. Soc., Faraday Trans.
87
, 1579
–1583
(1991
).18.
C.
Pozrikidis
, “Stability of sessile and pendant liquid drops
,” J. Eng. Math.
72
, 1
-20
(2012
).19.
L. A.
Slobozhanin
, J.
Meseguer
, and J. M.
Perales
, “A review on the stability of liquid bridges
,” Adv. Space Res.
16
, 5
-14
(1995
).20.
W.
Thomson (Lord Kelvin)
, “Capillary attraction
,” Nature
34
, 270
–369
, (1886
).21.
T.
Young
, “An essay on the cohesion of fluids
,” Philos. Trans. R. Soc. London
95
, 65
-87
(1805
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.