We report an experimental and theoretical study of the collapse time of a gas bubble injected into an otherwise stagnant liquid under quasi-static conditions and for a wide range of liquid viscosities. The experiments were performed by injecting a constant flow rate of air through a needle with inner radius a into several water/glycerine mixtures, providing a viscosity range of 20 cP ≲ μ ≲ 1500 cP. By analyzing the temporal evolution of the neck radius, R0(t), the collapse time has been extracted for three different stages during the collapse process, namely, Ri/a = 0.6, 0.4, and 0.2, being Ri = R0(t = 0) the initial neck radius. The collapse time is shown to monotonically increase with both Ri/a and with the Ohnesorge number, Oh = μ / ρ σ R i , where ρ and σ represent the liquid density and the surface tension coefficient, respectively. The theoretical approach is based on the cylindrical Rayleigh-Plesset equation for the radial liquid flow around the neck, which is the appropriate leading-order representation of the collapse dynamics, thanks to the slenderness condition R0(t) r1(t) ≪ 1, where r1(t) is half the axial curvature of the interface evaluated at the neck. The Rayleigh-Plesset equation can be integrated numerically to obtain the collapse time, τcol, which is made dimensionless using the capillary time, t σ = ρ R i 3 / σ . We present a novel scaling law for τcol as a function of Ri/a and Oh that closely follows the experimental data for the entire range of both parameters, and provide analytical expressions in the inviscid and Stokes regimes, i.e., τ col ( Oh 0 ) 2 ln C and τcol(Oh → ∞) → 2Oh, respectively, where C is a constant of order unity that increases with Ri/a.

1.
E. J.
Liu
,
K. V.
Cashman
,
A. C.
Rust
, and
S. R.
Gislason
, “
The role of bubbles in generating fine ash during hydromagmatic eruptions
,”
Geology
43
(
3
),
239
242
(
2015
).
2.
J. F.
Davidson
and
B. O. G.
Schuler
, “
Bubble formation at an orifice in an inviscid liquid
,”
Trans. Inst. Chem. Engrs.
38
,
335
342
(
1960
).
3.
A.
Marmur
and
E.
Rubin
, “
A theoretical model for bubble formation at an orifice submerged in an inviscid liquid
,”
Chem. Eng. Sci.
31
(
6
),
453
463
(
1976
).
4.
M. S.
Longuet-Higgins
,
B. R.
Kerman
, and
K.
Lunde
, “
The release of air bubbles from an underwater nozzle
,”
J. Fluid Mech.
230
,
365
390
(
1991
).
5.
D.
Gerlach
,
G.
Biswas
,
F.
Durst
, and
V.
Kolobaric
, “
Quasi-static bubble formation on submerged orifices
,”
Int. J. Heat Mass Transfer
48
(
2
),
425
438
(
2005
).
6.
S. T.
Thoroddsen
,
T. G.
Etoh
, and
K.
Takehara
, “
Experiments on bubble pinch-off
,”
Phys. Fluids
19
,
042101
(
2007
).
7.
F. J.
Higuera
and
A.
Medina
, “
Injection and coalescence of bubbles in a quiescent inviscid liquid
,”
Eur. J. Mech. - B-Fluids
25
,
164
171
(
2006
).
8.
R.
Bolaños-Jiménez
,
A.
Sevilla
,
C.
Martínez-Bazán
, and
J. M.
Gordillo
, “
Axisymmetric bubble collapse in a quiescent liquid pool. Part II. Experimental study
,”
Phys. Fluids
20
,
112104
(
2008
).
9.
H. N.
Og˜uz
and
A.
Prosperetti
, “
Dynamics of bubble growth and detachment from a needle
,”
J. Fluid Mech.
257
,
111
145
(
1993
).
10.
F. J.
Higuera
, “
Injection and coalescence of bubbles in a very viscous liquid
,”
J. Fluid Mech.
530
,
369
378
(
2005
).
11.
J. C.
Burton
,
R.
Waldrep
, and
P.
Taborek
, “
Scaling instabilities in bubble pinch-off
,”
Phys. Rev. Lett.
94
,
184502
(
2005
).
12.
R.
Bergmann
,
D.
van der Meer
,
M.
Stijnman
,
M.
Sandtke
,
A.
Prosperetti
, and
D.
Lohse
, “
Giant bubble pinch-off
,”
Phys. Rev. Lett.
96
,
154505
(
2006
).
13.
N. C.
Keim
,
P.
Moller
,
W. W.
Zhang
, and
S. R.
Nagel
, “
Breakup of air bubbles in water: Memory and breakdown of cylindrical symmetry
,”
Phys. Rev. Lett.
97
,
144503
(
2006
).
14.
J. M.
Gordillo
,
A.
Sevilla
,
J.
Rodríguez-Rodríguez
, and
C.
Martínez-Bazán
, “
Axisymmetric bubble pinch-off at high Reynolds numbers
,”
Phys. Rev. Lett.
95
,
194501
(
2005
).
15.
J.
Eggers
,
M. A.
Fontelos
,
D. M.
Leppinen
, and
J.
Snoeijer
, “
Theory of the collapsing axisymmetric cavity
,”
Phys. Rev. Lett.
98
,
094502
(
2007
).
16.
J. M.
Gordillo
and
M. A.
Fontelos
, “
Satellites in the inviscid breakup of bubbles
,”
Phys. Rev. Lett.
98
,
144503
(
2007
).
17.
R.
Bolaños-Jiménez
,
A.
Sevilla
,
C.
Martínez-Bazán
,
D.
van der Meer
, and
J. M.
Gordillo
, “
The effect of liquid viscosity on bubble pinch-off
,”
Phys. Fluids
21
,
072103
(
2009
).
18.
K.
Terasaka
and
H.
Tsuge
, “
Bubble formation at a single orifice in highly viscous liquids
,”
J. Chem. Eng. Jpn.
23
(
2
),
160
165
(
1990
).
19.
J. F.
Davidson
and
B. O. G.
Schuler
, “
Bubble formation at an orifice in a viscous liquid
,”
Chem. Eng. Res. Des.
75
,
S105
S115
(
1997
).
20.
H.
Wong
,
D.
Rumschitzki
, and
C.
Maldarelli
, “
Theory and experiment on the low-Reynolds-number expansion and contraction of a bubble pinned at a submerged tube tip
,”
J. Fluid Mech.
356
,
93
124
(
1998
).
21.
R.
Ramakrishnan
,
R.
Kumar
, and
N. R.
Kuloor
, “
Studies in bubble formation I. Bubble formation under constant flow conditions
,”
Chem. Eng. Sci.
24
,
731
(
1968
).
22.
R.
Kumar
and
N. R.
Kuloor
, “
The formation of bubbles and drops
,”
Adv. Chem. Eng.
8
,
255
368
(
1970
).
23.
K.
Terasaka
and
H.
Tsuge
, “
Bubble formation under constant flow conditions
,”
Chem. Eng. Sci.
48
,
3417
3422
(
1993
).
24.
M.
Ohta
,
D.
Kikuchi
,
Y.
Yoshida
, and
M.
Sussman
, “
Robust numerical analysis of the dynamic bubble formation process in a viscous liquid
,”
Int. J. Multiphase Flow
37
(
9
),
1059
1071
(
2011
).
25.
J. M.
Gordillo
, “
Axisymmetric bubble collapse in a quiescent liquid pool. Part I. Theory and numerical simulations
,”
Phys. Fluids
20
,
112103
(
2008
).
26.
A.
Sevilla
,
J. M.
Gordillo
, and
C.
Martínez-Bazán
, “
Bubble formation in a coflowing air-water stream
,”
J. Fluid Mech.
530
,
181
195
(
2005
).
You do not currently have access to this content.