In this paper we study the morphology of drops formed on partially wetting substrates, whose footprint is not circular. These drops are consequence of the breakup processes occurring in thin films when anisotropic contact line motions take place. The anisotropy is basically due to the hysteresis of the contact angle since there is a wetting process in some parts of the contact line, while a dewetting occurs in other parts. Here, we obtain a characteristic drop shape from the rupture of a long liquid filament sitting on a solid substrate. We analyze its shape and contact angles by means of goniometric and refractive techniques. We also find a non-trivial steady state solution for the drop shape within the long wave approximation (lubrication theory), and we compare most of its features with experimental data. This solution is presented both in Cartesian and polar coordinates, whose constants must be determined by a certain group of measured parameters. Besides, we obtain the dynamics of the drop generation from numerical simulations of the full Navier–Stokes equation, where we emulate the hysteretic effects with an appropriate spatial distribution of the static contact angle over the substrate.

1.
P. G.
de Gennes
, “
Wetting: Statics and dynamics
,”
Rev. Mod. Phys.
57
,
827
(
1985
).
2.
J. C.
Berg
,
Surfactant Science Series: Wettability
(
Marcel Dekker, Inc.
,
New York
,
1993
), Vol.
49
.
3.
P.-G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quere
,
Capillarity and Wetting Phenomena : Drops, Bubbles, Pearls, Waves
(
Springer
,
2002
).
4.
J. B.
Bostwick
and
P. H.
Steen
, “
Stability of constrained capillary surfaces
,”
Annu. Rev. Fluid Mech.
47
,
539
568
(
2015
).
5.
D. H.
Michael
and
P. G.
Williams
, “
The equilibrium and stability of sessile drops
,”
Proc. R. Soc. A
354
,
127
136
(
1977
).
6.
J. F.
Joanny
and
P. G.
de Gennes
, “
A model for contact line hysteresis
,”
J. Chem. Phys.
81
,
552
(
1984
).
7.
L.
Gao
and
T. J.
McCarthy
, “
Contact angle hysteresis explained
,”
Langmuir
22
,
6234
6237
(
2006
).
8.
H. B.
Eral
,
D. J. C. M.
Mannetje
, and
J. M.
Oh
, “
Contact angle hysteresis: A review of fundamentals and applications
,”
Colloid Polym. Sci.
291
,
247
260
(
2013
).
9.
G.
Whyman
,
E.
Bormashenko
, and
T.
Stein
, “
The rigorous derivation of Young, Cassie-Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon
,”
Chem. Phys. Lett.
450
,
355
359
(
2008
).
10.
A. J. B.
Milne
,
B.
Defez
,
M.
Cabrerizo-Vílchez
, and
A.
Amirfazli
, “
Understanding (sessile/constrained) bubble and drop oscillations
,”
Adv. Colloid Interface Sci.
203
,
22
36
(
2014
).
11.
C.
Fang
,
C.
Hidrovo
,
F.
Wang
,
J.
Eaton
, and
K.
Goodson
, “
3-D numerical simulation of contact angle hysteresis for microscale two phase flow
,”
Int. J. Multiphase Flow
34
,
690
705
(
2008
).
12.
M.
Delmas
,
M.
Monthioux
, and
T.
Ondarçuhu
, “
Contact angle hysteresis at the nanometer scale
,”
Phys. Rev. Lett.
106
,
136102
(
2011
).
13.
A. I.
ElSherbini
and
A. M.
Jacobi
, “
Liquid drops on vertical and inclined surfaces. I. An experimental study of drop geometry
,”
J. Colloid Interface Sci.
273
,
556
565
(
2004
).
14.
J. H.
Snoeijer
,
E.
Rio
,
N.
Le Grand
, and
L.
Limat
, “
Self-similar flow and contact line geometry at the rear of cornered drops
,”
Phys. Fluids
17
,
072101
(
2005
).
15.
A. G.
González
,
J.
Diez
,
R.
Gratton
, and
J.
Gomba
, “
Rupture of a fluid strip under partial wetting conditions
,”
Europhys. Lett.
77
,
44001
(
2007
).
16.
Y.
Zhang
,
S. D.
Oberdick
,
E. R.
Swanson
,
S. L.
Anna
, and
S.
Garoff
, “
Gravity driven current during the coalescence of two sessile drops
,”
Phys. Fluids
27
,
022101
(
2015
).
17.
S.
Brandon
,
N.
Haimovich
,
E.
Yeger
, and
A.
Marmur
, “
Partial wetting of chemically patterned surfaces: The effect of drop size
,”
J. Colloid Interface Sci.
263
,
237
(
2003
).
18.
J.-B.
Dupont
and
D.
Legendre
, “
Numerical simulation of static and sliding drop with contact angle hysteresis
,”
J. Comput. Phys.
229
,
2453
2478
(
2010
).
19.
J.-J.
Huang
,
H.
Huang
, and
X.
Wang
, “
Numerical study of drop motion on a surface with stepwise wettability gradient and contact angle hysteresis
,”
Phys. Fluids
26
,
062101
(
2014
).
20.
L. W.
Schwartz
, “
Hysteretic effects in droplet motions on heterogenous substrates: Direct numerical simulations
,”
Langmuir
14
,
3440
(
1998
).
21.
L. W.
Schwartz
and
R. R.
Eley
, “
Simulation of droplet motion on low-energy and heterogeneous surfaces
,”
J. Colloid Interface Sci.
202
,
173
(
1998
).
22.
U.
Opik
, “
Contact-angle hysteresis caused by a random distribution of weak heterogeneities on a solid surface
,”
J. Colloid Interface Sci.
223
,
143
(
2000
).
23.
D. Y.
Kwok
,
T.
Gietzelt
,
K.
Grundke
,
H.-J.
Jacobasch
, and
A. W.
Neumann
, “
Contact angle measurements and contact angle interpretation. 1. Contact angle measurements by axisymmetric drop shape analysis and a goniometer sessile drop technique
,”
Langmuir
13
,
2880
2894
(
1997
).
24.
A.
Hennig
,
K.-J.
Eichhorn
,
U.
Staudinger
,
K.
Sahre
,
M.
Rogalli
,
M.
Stamm
,
A. W.
Neumann
, and
K.
Grundke
, “
Contact angle hysteresis: Study by dynamic cycling contact angle measurements and variable angle spectroscopic ellipsometry on polyimide
,”
Langmuir
20
,
6685
6691
(
2004
).
25.
D.
Beaglehole
, “
Profiles of the precursor of spreading drops of siloxane oil on glass, fused silica, and mica
,”
J. Phys. Chem.
93
,
893
899
(
1989
).
26.
A. G.
González
,
J.
Diez
,
J.
Gomba
,
R.
Gratton
, and
L.
Kondic
, “
Spreading of a thin two-dimensional strip of fluid on a vertical plane: Experiments and modeling
,”
Phys. Rev. E
70
,
026309
(
2004
).
27.
J.
Diez
,
A. G.
González
,
J.
Gomba
,
R.
Gratton
, and
L.
Kondic
, “
Unstable spreading of a fluid filament on a vertical plane: Experiments and simulations
,”
Physica D
209
,
49
(
2005
).
28.
J.
Diez
,
A. G.
González
, and
L.
Kondic
, “
On the breakup of fluid rivulets
,”
Phys. Fluids
21
,
082105
(
2009
).
29.
J.
Diez
,
A. G.
González
, and
L.
Kondic
, “
Stability of a finite-length rivulet under partial wetting conditions
,”
J. Phys.: Conf. Ser.
166
,
012009
(
2009
).
30.
S.
Ubal
,
P.
Grassia
,
D. M.
Campana
,
M. D.
Giavedoni
, and
F. A.
Saita
, “
The influence of inertia and contact angle on the instability of partially wetting liquid strips: A numerical analysis study
,”
Phys. Fluids
26
,
032106
(
2014
).
31.
T. J. R.
Hughes
,
W. K.
Liuand
, and
T. K.
Zimmermann
, “
Lagrangian-Eulerian finite element formulation for incompressible viscous flows
,”
Comput. Methods Appl. Mech. Eng.
29
,
329
349
(
1981
).
32.
J.
Donea
,
S.
Giuliani
, and
J. P.
Halleux
, “
An Arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions
,”
Comput. Methods Appl. Mech. Eng.
33
,
689
723
(
1982
).
33.
K. N.
Christodoulou
and
L. E.
Scriven
, “
Discretization of free surface flows and other moving boundary problems
,”
J. Comput. Phys.
99
,
39
55
(
1992
).
34.
C. W.
Hirt
,
A. A.
Amsden
, and
J. L.
Cook
, “
An Arbitrary Lagrangian-Eulerian computing method for all flow speed
,”
J. Comput. Phys.
135
,
203
216
(
1997
).
35.
A. M.
Winslow
, “
Numerical solution of the quasilinear poisson equation in a nonuniform triangle mesh
,”
J. Comput. Phys.
1
,
149
172
(
1966
).
36.
P. M.
Knupp
, “
Winslow smoothing on two-dimensional unstructured meshes
,”
Eng. Comput.
15
,
263
268
(
1999
).
37.
T. E.
Tezduyar
, “
Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces
,”
Comput. Methods Appl. Mech. Eng.
195
,
2983
3000
(
2006
).
You do not currently have access to this content.