The applicability of the order of magnitude method [H. Struchtrup, “Stable transport equations for rarefied gases at high orders in the Knudsen number,” Phys. Fluids 16, 3921–3934 (2004)] is extended to binary gas mixtures in order to derive various sets of equations—having minimum number of moments at a given order of accuracy in the Knudsen number—for binary mixtures of monatomic-inert-ideal gases interacting with the Maxwell interaction potential. For simplicity, the equations are derived in the linear regime up to third order accuracy in the Knudsen number. At zeroth order, the method produces the Euler equations; at first order, it results into the Fick, Navier–Stokes, and Fourier equations; at second order, it yields a set of 17 moment equations; and at third order, it leads to the regularized 17-moment equations. The transport coefficients in the Fick, Navier–Stokes, and Fourier equations obtained through order of magnitude method are compared with those obtained through the classical Chapman–Enskog expansion method. It is established that the different temperatures of different constituents do not play a role up to second order accurate theories in the Knudsen number, whereas they do contribute to third order accurate theory in the Knudsen number. Furthermore, it is found empirically that the zeroth, first, and second order accurate equations are linearly stable for all binary gas mixtures; however, although the third order accurate regularized 17-moment equations are linearly stable for most of the mixtures, they are linearly unstable for mixtures having extreme difference in molecular masses.

1.
S.
Chapman
and
T. G.
Cowling
,
The Mathematical Theory of Non-Uniform Gases
(
Cambridge University Press
,
Cambridge
,
1970
).
2.
C.
Cercignani
,
Theory and Application of the Boltzmann Equation
(
Scottish Academic
,
Edinburgh
,
1975
).
3.
H.
Struchtrup
,
Macroscopic Transport Equations for Rarefied Gas Flows
(
Springer
,
Berlin
,
2005
).
4.
G.
Karniadakis
,
A.
Beskok
, and
N.
Aluru
,
Microflows and Nanoflows: Fundamentals and Simulation
(
Springer
,
New York
,
2005
).
5.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon Press
,
Oxford
,
1994
).
6.
J. E.
Broadwell
, “
Study of rarefied shear flow by the discrete velocity method
,”
J. Fluid Mech.
19
,
401
414
(
1964
).
7.
T.
Ohwada
, “
Heat flow and temperature and density distributions in a rarefied gas between parallel plates with different temperatures. Finite-difference analysis of the nonlinear Boltzmann equation for hard-sphere molecules
,”
Phys. Fluids
8
,
2153
2160
(
1996
).
8.
J. O.
Hirschfelder
,
C. F.
Curtiss
, and
R. B.
Bird
,
Molecular Theory of Gases and Liquids
(
Wiley
,
New York
,
1964
).
9.
J. H.
Ferziger
and
H. G.
Kaper
,
Mathematical Theory of Transport Processes in Gases
(
North-Holland Publishing Company
,
Amsterdam, London
,
1972
).
10.
G. M.
Kremer
,
An Introduction to the Boltzmann Equation and Transport Processes in Gases
(
Springer
,
Berlin
,
2010
).
11.
V. K.
Gupta
, “
Kinetic theory and Burnett order constitutive relations for a smooth granular gas
,” Master’s thesis,
JNCASR, Bangalore, India
,
2011
.
12.
H.
Grad
, “
On the kinetic theory of rarefied gases
,”
Commun. Pure Appl. Math.
2
,
331
407
(
1949
).
13.
H.
Grad
, “
Principles of the kinetic theory of gases
,” in
Thermodynamik der Gase
,
Handbuch der Physik
Vol.
3/12
(
Springer
,
Berlin
,
1958
), pp.
205
294
.
14.
I.
Müller
and
T.
Ruggeri
,
Rational Extended Thermodynamics
(
Springer
,
New York
,
1998
).
15.
C.
Cercignani
,
Mathematical Methods in Kinetic Theory
(
Plenum
,
New York
,
1969
).
16.
M. N.
Kogan
,
Rarefied Gas Dynamics
(
Plenum
,
New York
,
1969
).
17.
C.
Truesdell
and
R. G.
Muncaster
,
Fundamentals of Maxwell’s Kinetic Theory of a Simple Monatomic Gas
(
Academic Press
,
New York
,
1980
).
18.
A. V.
Bobylev
, “
The Chapman–Enskog and Grad methods for solving the Boltzmann equation
,”
Sov. Phys. Dokl.
27
,
29
31
(
1982
).
19.
J. D.
Au
,
M.
Torrilhon
, and
W.
Weiss
, “
The shock tube study in extended thermodynamics
,”
Phys. Fluids
13
,
2423
2432
(
2001
).
20.
W.
Weiss
, “
Continuous shock structure in extended thermodynamics
,”
Phys. Rev. E
52
,
5760
5763
(
1995
).
21.
H.
Struchtrup
, “
Heat transfer in the transition regime: Solution of boundary value problems for Grad’s moment equations via kinetic schemes
,”
Phys. Rev. E
65
,
041204
(
2002
).
22.
H.
Struchtrup
, “
Some remarks on the equations of Burnett and Grad
,” in
Transport in Transition Regimes
,
The IMA Volumes in Mathematics and its Applications
Vol.
135
(
Springer
,
New York
,
2004
), pp.
265
276
.
23.
D.
Reitebuch
and
W.
Weiss
, “
Application of high moment theory to the plane Couette flow
,”
Continuum Mech. Thermodyn.
11
,
217
225
(
1999
).
24.
H.
Struchtrup
and
M.
Torrilhon
, “
Regularization of Grad’s 13 moment equations: Derivation and linear analysis
,”
Phys. Fluids
15
,
2668
2680
(
2003
).
25.
H.
Struchtrup
, “
Stable transport equations for rarefied gases at high orders in the Knudsen number
,”
Phys. Fluids
16
,
3921
3934
(
2004
).
26.
I.
Müller
,
D.
Reitebuch
, and
W.
Weiss
, “
Extended thermodynamics–consistent in order of magnitude
,”
Continuum Mech. Thermodyn.
15
,
113
146
(
2003
).
27.
P. L.
Bhatnagar
,
E. P.
Gross
, and
M.
Krook
, “
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,”
Phys. Rev.
94
,
511
525
(
1954
).
28.
H.
Struchtrup
and
M.
Torrilhon
, “
Regularized 13 moment equations for hard sphere molecules: Linear bulk equations
,”
Phys. Fluids
25
,
052001
(
2013
).
29.
H.
Struchtrup
, “
Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials
,”
Multiscale Model. Simul.
3
,
221
243
(
2005
).
30.
M.
Torrilhon
, “
Two-dimensional bulk microflow simulations based on regularized Grad’s 13-moment equations
,”
Multiscale Model. Simul.
5
,
695
728
(
2006
).
31.
P.
Taheri
,
A. S.
Rana
,
M.
Torrilhon
, and
H.
Struchtrup
, “
Macroscopic description of steady and unsteady rarefaction effects in boundary value problems of gas dynamics
,”
Continuum Mech. Thermodyn.
21
,
423
443
(
2009
).
32.
P.
Taheri
and
H.
Struchtrup
, “
Effects of rarefaction in microflows between coaxial cylinders
,”
Phys. Rev. E
80
,
066317
(
2009
).
33.
P.
Taheri
,
H.
Struchtrup
, and
M.
Torrilhon
, “
Couette and Poiseuille microflows: Analytical solutions for regularized 13-moment equations
,”
Phys. Fluids
21
,
017102
(
2009
).
34.
M.
Torrilhon
, “
Slow gas microflow past a sphere: Analytical solution based on moment equations
,”
Phys. Fluids
22
,
072001
(
2010
).
35.
A.
Rana
,
M.
Torrilhon
, and
H.
Struchtrup
, “
A robust numerical method for the R13 equations of rarefied gas dynamics: Application to lid driven cavity
,”
J. Comput. Phys.
236
,
169
186
(
2013
).
36.
X.-J.
Gu
and
D. R.
Emerson
, “
Linearized-moment analysis of the temperature jump and temperature defect in the Knudsen layer of a rarefied gas
,”
Phys. Rev. E
89
,
063020
(
2014
).
37.
A. S.
Rana
,
A.
Mohammadzadeh
, and
H.
Struchtrup
, “
A numerical study of the heat transfer through a rarefied gas confined in a microcavity
,”
Continuum Mech. Thermodyn.
27
,
433
446
(
2015
).
38.
N.
Singh
,
A.
Gavasane
, and
A.
Agrawal
, “
Analytical solution of plane Couette flow in the transition regime and comparison with direct simulation Monte Carlo data
,”
Comput. Fluids
97
,
177
187
(
2014
).
39.
M.
Torrilhon
, “
Modeling nonequilibrium gas flow based on moment equations
,”
Annu. Rev. Fluid Mech.
48
,
429
458
(
2016
).
40.
D.
Enskog
, “Kinetische theorie der vorgänge in mäßig verdünnten gasen. I. Allgemeiner teil,” Inaugural Dissertation (Almqvist and Wiksell, Uppsala, Sweden, 1917).
41.
I. I.
Kolodner
, “
On the application of the Boltzmann equations to the theory of gas mixtures
,” Ph.D. thesis,
New York University, USA
,
1950
.
42.
J. M.
Burgers
,
Flow Equations for Composite Gases
(
Academic Press
,
New York
,
1969
).
43.
M.
Heckl
and
I.
Müller
, “
Frame dependence, entropy, entropy flux, and wave speeds in mixtures of gases
,”
Acta Mech.
50
,
71
95
(
1983
).
44.
G. M.
Kremer
, “
Extended thermodynamics of mixtures of ideal gases
,”
Int. J. Eng. Sci.
25
,
95
115
(
1987
).
45.
V.
Zhdanov
and
V.
Roldughin
, “
Moment method and the rarefied gas flow in channels. II. Diffusion in a multicomponent gas mixture
,”
Physica A
199
,
291
298
(
1993
).
46.
V. M.
Zhdanov
and
G. A.
Tirskii
, “
The use of the moment method to derive the gas and plasma transport equations with transport coefficients in higher-order approximations
,”
J. Appl. Math. Mech.
67
,
365
388
(
2003
).
47.
V. M.
Zhdanov
,
Transport Processes in Multicomponent Plasma
(
Taylor & Francis
,
London
,
2002
).
48.
T.
Ruggeri
and
J.
Lou
, “
Heat conduction in multi-temperature mixtures of fluids: The role of the average temperature
,”
Phys. Lett. A
373
,
3052
3055
(
2009
).
49.
V. K.
Gupta
and
M.
Torrilhon
, “
Higher order moment equations for rarefied gas mixtures
,”
Proc. R. Soc. A
471
,
20140754
(
2015
).
50.
V. K.
Gupta
, “
Mathematical modeling of rarefied gas-mixtures
,” Ph.D. thesis,
RWTH Aachen University, Germany
,
2015
.
51.
V. K.
Gupta
and
M.
Torrilhon
, “
Automated Boltzmann collision integrals for moment equations
,”
AIP Conf. Proc.
1501
,
67
74
(
2012
).
52.
V. K.
Gupta
and
M.
Torrilhon
, “
Comparison of relaxation phenomena in binary gas-mixtures of Maxwell molecules and hard spheres
,”
Comput. Math. Appl.
70
,
73
88
(
2015
).
53.
L.
Onsager
, “
Reciprocal relations in irreversible processes. I
,”
Phys. Rev.
37
,
405
426
(
1931
).
54.
L.
Onsager
, “
Reciprocal relations in irreversible processes. II
,”
Phys. Rev.
38
,
2265
2279
(
1931
).
55.
F.
Sharipov
and
J. L.
Strapasson
, “
Benchmark problems for mixtures of rarefied gases. I. Couette flow
,”
Phys. Fluids
25
,
037102
(
2013
).
56.
J.
Kestin
,
K.
Knierim
,
E. A.
Mason
,
B.
Najafi
,
S. T.
Ro
, and
M.
Waldman
, “
Equilibrium and transport properties of the noble gases and their mixtures at low density
,”
J. Phys. Chem. Ref. Data
13
,
229
303
(
1984
).
You do not currently have access to this content.