Motivated by extensive discussion in the literature, by experimental evidence and by recent direct numerical simulations, we study flows over hydrophobic surfaces with shear-dependent slip lengths and we report their drag-reduction properties. The laminar channel-flow and pipe-flow solutions are derived and the effects of hydrophobicity are quantified by the decrease of the streamwise pressure gradient for constant mass flow rate and by the increase of the mass flow rate for constant streamwise pressure gradient. The nonlinear Lyapunov stability analysis, first applied to a two-dimensional channel flow by Balogh et al. [“Stability enhancement by boundary control in 2-D channel flow,” IEEE Trans. Autom. Control 46, 1696-1711 (2001)], is employed on the three-dimensional channel flow with walls featuring shear-dependent slip lengths. The feedback law extracted through the stability analysis is recognized for the first time to coincide with the slip-length model used to represent the hydrophobic surfaces, thereby providing a precise physical interpretation for the feedback law advanced by Balogh et al. The theoretical framework by Fukagata et al. [“A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces,” Phys. Fluids 18, 051703 (2006)] is employed to model the drag-reduction effect engendered by the shear-dependent slip-length surfaces and the theoretical drag-reduction values are in very good agreement with our direct numerical simulation data. The turbulent drag reduction is measured as a function of the hydrophobic-surface parameters and is found to be a function of the time- and space-averaged slip length, irrespective of the local and instantaneous slip behaviour at the wall. For slip parameters and flow conditions that could be realized in the laboratory, the maximum computed turbulent drag reduction is 50% and the drag reduction effect degrades when slip along the spanwise direction is considered. The power spent by the turbulent flow on the hydrophobic walls is computed for the first time and is found to be a non-negligible portion of the power saved through drag reduction, thereby recognizing the hydrophobic surfaces as a passive-absorbing drag-reduction method. The turbulent flow is further investigated through flow visualizations and statistics of the relevant quantities, such as vorticity and strain rates. When rescaled in drag-reduction viscous units, the streamwise vortices over the hydrophobic surface are strongly altered, while the low-speed streaks maintain their characteristic spanwise spacing. We finally show that the reduction of vortex stretching and enstrophy production is primarily caused by the eigenvectors of the strain rate tensor orienting perpendicularly to the vorticity vector.

1.
M.
Gad-el Hak
,
Flow Control–Passive, Active and Reactive Flow Management
(
Cambridge University Press
,
2000
).
2.
J.
Philip
, “
Flows satisfying mixed no-slip and no-shear conditions
,”
Z. Angew. Math. Phys.
23
,
353
372
(
1972
).
3.
K.
Watanabe
,
Y.
Udagawa
, and
H.
Udagawa
, “
Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall
,”
J. Fluid Mech.
381
,
225
238
(
1999
).
4.
T.
Min
and
J.
Kim
, “
Effects of hydrophobic surface on skin-friction drag
,”
Phys. Fluids
16
,
L55
L58
(
2004
).
5.
T.
Min
and
J.
Kim
, “
Effects of hydrophobic surface on stability and transition
,”
Phys. Fluids
17
,
108106
(
2005
).
6.
K.
Fukagata
,
N.
Kasagi
, and
P.
Koumoutsakos
, “
A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces
,”
Phys. Fluids
18
,
051703
(
2006
).
7.
E.
Lauga
and
H.
Stone
, “
Effective slip in pressure-driven Stokes flow
,”
J. Fluid Mech.
489
,
55
77
(
2003
).
8.
C.
Choi
and
C.
Kim
, “
Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface
,”
Phys. Rev. Lett.
96
,
066001
(
2006
).
9.
A.
Busse
and
N. D.
Sandham
, “
Influence of an anisotropic slip-length boundary condition on turbulent channel flow
,”
Phys. Fluids
24
,
055111
(
2012
).
10.
L.
Feng
,
S.
Li
,
Y.
Li
,
H.
Li
,
L.
Zhang
,
J.
Zhai
,
Y.
Song
,
B.
Liu
,
L.
Jiang
, and
D.
Zhu
, “
Super-hydrophobic surfaces: From natural to artificial
,”
Adv. Mater.
14
,
1857
1860
(
2002
).
11.
T.-S.
Wong
,
S.
Kang
,
S.
Tang
,
E.
Smythe
,
B.
Hatton
,
A.
Grinthal
, and
J.
Aizenberg
, “
Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity
,”
Nature
477
,
443
447
(
2011
).
12.
P.
Wilson
,
W.
Lu
,
H.
Xu
,
P.
Kim
,
M.
Kreder
,
J.
Alvarenga
, and
J.
Aizenberg
, “
Inhibition of ice nucleation by slippery liquid-infused porous surfaces (slips)
,”
Phys. Chem. Chem. Phys.
15
,
581
585
(
2013
).
13.
J.
Wexler
,
I.
Jacobi
, and
H.
Stone
, “
Shear-driven failure of liquid-infused surfaces
,”
Phys. Rev. Lett.
114
,
168301
(
2015
).
14.
I.
Jacobi
,
J.
Wexler
, and
H.
Stone
, “
Overflow cascades in liquid-infused substrates
,”
Phys. Fluids
27
,
082101
(
2015
).
15.
B.
Rosenberg
,
T.
Van Buren
,
M.
Fu
, and
A.
Smits
, “
Turbulent drag reduction over air-and liquid-impregnated surfaces
,”
Phys. Fluids
28
,
015103
(
2016
).
16.
J.
Ou
and
J.
Rothstein
, “
Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces
,”
Phys. Fluids
17
,
103606
(
2005
).
17.
A.
Busse
,
N.
Sandham
,
G.
McHale
, and
M.
Newton
, “
Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface
,”
J. Fluid Mech.
727
,
488
508
(
2013
).
18.
J.
Ou
,
B.
Perot
, and
J.
Rothstein
, “
Laminar drag reduction in microchannels using ultrahydrophobic surfaces
,”
Phys. Fluids
16
,
4635
4643
(
2004
).
19.
C.
Navier
, “
Mémoire sur les lois du mouvement des fluides
,”
Mém. Acad. R. Sci. Inst. France
6
,
389
440
(
1823
).
20.
R.
Daniello
,
N.
Waterhouse
, and
J.
Rothstein
, “
Drag reduction in turbulent flows over superhydrophobic surfaces
,”
Phys. Fluids
21
,
085103
(
2009
).
21.
E.
Aljallis
,
M.
Sarshar
,
R.
Datla
,
V.
Sikka
,
A.
Jones
, and
C.-H.
Choi
, “
Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow
,”
Phys. Fluids
25
,
025103
(
2013
).
22.
R. A.
Bidkar
,
L.
Leblanc
,
A. J.
Kulkarni
,
V.
Bahadur
,
S. L.
Ceccio
, and
M.
Perlin
, “
Skin-friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces
,”
Phys. Fluids
26
,
085108
(
2014
).
23.
Y.
Hasegawa
,
B.
Frohnapfel
, and
N.
Kasagi
, “
Effects of spatially varying slip length on friction drag reduction in wall turbulence
,”
J. Phys.: Conf. Ser.
318
,
022028
(
2011
).
24.
A.
Stroock
,
S.
Dertinger
,
G.
Whitesides
, and
A.
Ajdari
, “
Patterning flows using grooved surfaces
,”
Anal. Chem.
74
,
5306
5312
(
2002
).
25.
M.
Bazant
and
O.
Vinogradova
, “
Tensorial hydrodynamic slip
,”
J. Fluid Mech.
613
,
125
134
(
2008
).
26.
M.
Martell
,
J.
Perot
, and
J.
Rothstein
, “
Direct numerical simulations of turbulent flows over superhydrophobic surfaces
,”
J. Fluid Mech.
620
,
31
41
(
2009
).
27.
M.
Martell
,
J.
Rothstein
, and
J.
Perot
, “
An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation
,”
Phys. Fluids
22
,
065102
(
2010
).
28.
J.
Lee
,
T.
Jelly
, and
T.
Zaki
, “
Effect of Reynolds number on turbulent drag reduction by superhydrophobic surface textures
,”
Flow Turbul. Combust.
95
,
277
300
(
2015
).
29.
J.
Rothstein
, “
Slip on superhydrophobic surfaces
,”
Annu. Rev. Fluid Mech.
42
,
89
109
(
2010
).
30.
T.
Jelly
,
S.
Jung
, and
T.
Zaki
, “
Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture
,”
Phys. Fluids
26
,
095102
(
2014
).
31.
E.
Bonaccurso
,
H.-J.
Butt
, and
V.
Craig
, “
Surface roughness and hydrodynamic boundary slip of a Newtonian fluid in a completely wetting system
,”
Phys. Rev. Lett.
90
,
144501
(
2003
).
32.
C.-H.
Choi
,
K.
Westin
, and
K.
Breuer
, “
Apparent slip flows in hydrophilic and hydrophobic microchannels
,”
Phys. Fluids
15
,
2897
(
2003
).
33.
N.
Churaev
,
V.
Sobolev
, and
A.
Somov
, “
Slippage of liquids over lyophobic solid surfaces
,”
J. Colloid Interface Sci.
97
,
574
581
(
1984
).
34.
V.
Craig
,
C.
Neto
, and
D.
Williams
, “
Shear-dependent boundary slip in an aqueous Newtonian liquid
,”
Phys. Rev. Lett.
87
,
054504
(
2001
).
35.
C.
Schönecker
,
T.
Baier
, and
S.
Hardt
, “
Influence of the enclosed fluid on the flow over a microstructured surface in the Cassie state
,”
J. Fluid Mech.
740
,
168
195
(
2014
).
36.
C.
Schönecker
and
S.
Hardt
, “
Longitudinal and transverse flow over a cavity containing a second immiscible fluid
,”
J. Fluid Mech.
717
,
376
394
(
2013
).
37.
T.
Jung
,
H.
Choi
, and
J.
Kim
, “
Effects of the air layer of an idealized superhydrophobic surface on the slip length and skin-friction drag
,”
J. Fluid Mech.
790
,
R1
(
2016
).
38.
C.
Schönecker
and
S.
Hardt
, “
Assessment of drag reduction at slippery, topographically structured surfaces
,”
Microfluid. Nanofluid.
19
,
199
207
(
2015
).
39.
S.
Laizet
and
E.
Lamballais
, “
High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy
,”
J. Comput. Phys.
228
,
5989
6015
(
2009
).
40.
S.
Laizet
and
N.
Li
, “
Incompact3d: A powerful tool to tackle turbulence problems with up to O (105) computational cores
,”
Int. J. Numer. Methods Fluids
67
,
1735
1757
(
2011
).
41.
A.
Balogh
,
W.
Liu
, and
M.
Krstic
, “
Stability enhancement by boundary control in 2-D channel flow
,”
IEEE Trans. Autom. Control
46
,
1696
1711
(
2001
).
42.
P.
Thompson
and
S.
Troian
, “
A general boundary condition for liquid flow at solid surfaces
,”
Nature
389
,
360
362
(
1997
).
43.
A.
Balogh
,
O.
Aamo
, and
M.
Krstic
, “
Optimal mixing enhancement in 3-D pipe flow
,”
IEEE Trans. Control Syst. Technol.
13
,
27
41
(
2005
).
44.
A.
Fedorov
and
A. P.
Khokhlov
, “
Prehistory of instability in a hypersonic boundary layer
,”
Theor. Comput. Fluid Dyn.
14
,
359
375
(
2001
).
45.
A.
Fedorov
,
A.
Shiplyuk
,
A.
Maslov
,
E.
Burov
, and
N.
Malmuth
, “
Stabilization of a hypersonic boundary layer using an ultrasonically absorptive coating
,”
J. Fluid Mech.
479
,
99
124
(
2003
).
46.
A.
Shiplyuk
,
E. V.
Burov
,
A.
Maslov
, and
V. M.
Fomin
, “
Effect of porous coatings on stability of hypersonic boundary layers
,”
J. Appl. Mech. Tech. Phys.
45
,
286
291
(
2004
).
47.
J.
Jiménez
,
M.
Uhlmann
,
A.
Pinelli
, and
G.
Kawahara
, “
Turbulent shear flow over active and passive porous surfaces
,”
J. Fluid Mech.
442
,
89
117
(
2001
).
48.
P.
Ricco
and
S.
Hahn
, “
Turbulent drag reduction through rotating discs
,”
J. Fluid Mech.
722
,
267
290
(
2013
).
49.
R. B.
Dean
, “
Reynolds number dependence of the skin friction and other bulk flow variables in two-dimensional rectangular duct flow
,”
J. Fluids Eng.
100
,
215
223
(
1978
).
50.
S.
Hoyas
and
J.
Jiménez
, “
Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003
,”
Phys. Fluids
18
,
011702
(
2006
).
51.
I.
Marusic
,
B.
McKeon
,
P.
Monkewitz
,
H.
Nagib
,
A.
Smits
, and
K.
Sreenivasan
, “
Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues
,”
Phys. Fluids
22
,
065103
(
2010
).
52.
M.
Bernardini
,
S.
Pirozzoli
, and
P.
Orlandi
, “
Velocity statistics in turbulent channel flow up to Reτ = 4, 000
,”
J. Fluid Mech.
742
,
171
191
(
2014
).
53.
W.
Dunn
and
J.
Shultis
,
Exploring Monte Carlo Methods
(
Elsevier
,
2011
).
54.
K.
Fukagata
,
K.
Iwamoto
, and
N.
Kasagi
, “
Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows
,”
Phys. Fluids
14
,
73
76
(
2002
).
55.
S.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
56.
R.
Govardhan
,
G.
Srinivas
,
A.
Asthana
, and
M.
Bobji
, “
Time dependence of effective slip on textured hydrophobic surfaces
,”
Phys. Fluids
21
,
052001
(
2009
).
57.
W.
Jung
,
N.
Mangiavacchi
, and
R.
Akhavan
, “
Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations
,”
Phys. Fluids A
4
,
1605
1607
(
1992
).
58.
M.
Quadrio
and
P.
Ricco
, “
The laminar generalized Stokes layer and turbulent drag reduction
,”
J. Fluid Mech.
667
,
135
157
(
2011
).
59.
D.
Roggenkamp
,
W.
Jessen
,
W.
Li
,
M.
Klaas
, and
W.
Schröder
, “
Experimental investigation of turbulent boundary layers over transversal moving surfaces
,”
CEAS Aeronaut. J.
6
,
471
484
(
2015
).
60.
J.
Kim
,
P.
Moin
, and
R.
Moser
, “
Turbulence statistics in fully developed channel flow at low Reynolds number
,”
J. Fluid Mech.
177
,
133
166
(
1987
).
61.
H.
Choi
,
P.
Moin
, and
J.
Kim
, “
Active turbulence control for drag reduction in wall-bounded flows
,”
J. Fluid Mech.
262
,
75
110
(
1994
).
62.
J.
Jiménez
, “
On the structure and control of near wall turbulence
,”
Phys. Fluids
6
,
944
(
1994
).
63.
A.
Kravchenko
,
H.
Choi
, and
P.
Moin
, “
On the relation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers
,”
Phys. Fluids
5
,
3307
3309
(
1993
).
64.
S.
Kline
,
W.
Reynolds
,
F.
Schraub
, and
P.
Runstadler
, “
The structure of turbulent boundary layers
,”
J. Fluid Mech.
30
,
741
(
1967
).
65.
R.
Panton
, “
Overview of the self-sustaining mechanisms of wall turbulence
,”
Prog. Aerosp. Sci.
37
,
341
383
(
2001
).
66.
P.
Hamlington
,
J.
Schumacher
, and
W.
Dahm
, “
Direct assessment of vorticity alignment with local and nonlocal strain rates in turbulent flows
,”
Phys. Fluids
20
,
111703
(
2008
).
67.
R.
Betchov
, “
An inequality concerning the production of vorticity in isotropic turbulence
,”
J. Fluid Mech.
1
,
497
504
(
1956
).
68.
O.
Buxton
,
S.
Laizet
, and
B.
Ganapathisubramani
, “
The interaction between strain-rate and rotation in shear flow turbulence from inertial range to dissipative length scales
,”
Phys. Fluids
23
,
061704
(
2011
).
69.
J.
Hinze
,
Turbulence
, 2nd ed. (
McGraw Hill, Inc.
,
1975
).
70.
R.
Garcıa-Mayoral
,
J.
Seo
, and
A.
Mani
, “
Dynamics of gas–liquid interfaces in turbulent flows over superhydrophobic surfaces
,” in
Proceedings of CTR Summer Program
(
Department of Mechanical Engineering Stanford University
,
2014
), p.
295
.
71.
A.
Davis
and
E.
Lauga
, “
Geometric transition in friction for flow over a bubble mattress
,”
Phys. Fluids
21
,
011701
(
2009
).
You do not currently have access to this content.