Certain experiments in quasi-isobaric supercritical injection remain unexplained by the current state of theory: Without developing a constant value potential core as expected from the mechanical view of break-up, density is observed to drop immediately upon entering the chamber. Furthermore, this phenomenon has never been captured in computational fluid dynamics (CFD) despite having become a de facto standard case for real fluid CFD validation. In this paper, we present strong evidence for a thermal jet disintegration mechanism (in addition to classical mechanical break-up) which resolves both the theoretical and the computational discrepancies. A new interpretation of supercritical jet disintegration is introduced, based on pseudo-boiling, a nonlinear supercritical transition from gas-like to liquid-like states. We show that thermal disintegration may dominate classical mechanical break-up when heat transfer takes place in the injector and when the fluid state is sufficiently close to the pseudo-boiling point. A procedure which allows to capture subsided cores with standard CFD is provided and demonstrated.

1.
C. D.
Boer
,
G.
Bonar
,
S.
Sasaki
, and
S.
Shetty
, inSAE World Congress & Exhibition, SAE 2013-01-0257 (SAE, Detroit, USA, 2013).
2.
M.
Habiballah
,
M.
Orain
,
F.
Grisch
,
L.
Vingert
, and
P.
Gicquel
, “
Experimental studies of high-pressure cryogenic flames on the Mascotte facility
,”
Combust. Sci. Technol.
178
,
101
(
2006
).
3.
S.
Candel
,
M.
Juniper
,
G.
Singla
,
P.
Scouflaire
, and
C.
Rolon
, “
Structure and dynamics of cryogenic flames at supercritical pressure
,”
Combust. Sci. Technol.
178
,
161
(
2006
).
4.
B.
Chehroudi
,
D.
Talley
, and
E.
Coy
, AIAA Paper No. 99-0206, 1999.
5.
M.
Oschwald
,
J.
Smith
,
R.
Branam
,
J.
Hussong
,
A.
Schik
,
B.
Chehroudi
, and
D.
Talley
, “
Injection of fluids into supercritical environments
,”
Combust. Sci. Technol.
178
,
49
(
2006
).
6.
B.
Chehroudi
, “
Physical hypothesis for the combustion instability in cryogenic liquid rocket engines
,”
J. Propul. Power
26
,
1153
(
2010
).
7.
H.
Rehab
,
E.
Villermaux
, and
E.
Hopfinger
, “
Flow regimes of large-velocity-ratio coaxial jets
,”
J. Fluid Mech.
345
,
357
(
1997
).
8.
G.
Abramovich
,
The Theory of Turbulent Jets
(
MIT Press
,
Cambridge
,
1963
).
9.
E.
Villermaux
, “
Mixing and spray formation in coaxial jets
,”
J. Propul. Power
14
,
807
(
1998
).
10.
J.
Lasheras
and
E.
Hopfinger
, “
Liquid jet instability and atomization in a coaxial gas stream
,”
Annu. Rev. Fluid Mech.
32
,
275
(
2000
).
11.
B.
Chehroudi
,
D.
Talley
, and
E.
Coy
, “
Visual characteristics and initial growth rates of round cryogenic jets at subcritical and supercritical pressures
,”
Phys. Fluids
14
,
850
(
2002
).
12.
M.
Oschwald
and
A.
Schik
, “
Supercritical nitrogen free jet investigated by spontaneous Raman scattering
,”
Exp. Fluids
27
,
497
(
1999
).
13.
M.
Oschwald
and
M.
Micci
, “
Spreading angle and centerline variation of density of supercritical nitrogen jets
,”
Atomization Sprays
11
,
91
(
2002
).
14.
R.
Branam
and
W.
Mayer
, “
Length scales in cryogenic injection at supercritical pressure
,”
Exp. Fluids
33
,
422
(
2002
).
15.
T.
Kim
,
Y.
Kim
, and
S.-K.
Kim
, “
Numerical study of cryogenic liquid nitrogen jets at supercritical pressures
,”
J. Supercrit. Fluids
56
,
152
(
2011
).
16.
H.
Müller
,
C.
Niedermeier
,
M.
Jarczyk
,
M.
Pfitzner
,
S.
Hickel
, and
N.
Adams
, in
Proceedings of the EUCASS Conference
(
EUCASS
,
Munich, Germany
,
2013
).
17.
C.
Niedermeier
,
M.
Jarczyk
,
S.
Hickel
,
N.
Adams
, and
M.
Pfitzner
, AIAA Paper 2013-2950, 2013.
18.
T.
Schmitt
,
L.
Selle
,
B.
Cuenot
, and
T.
Poinsot
, “
Large-eddy simulation of transcritical flows
,”
C. R. Mec.
337
,
528
(
2009
).
19.
T.
Schmitt
,
L.
Selle
,
A.
Ruiz
, and
B.
Cuenot
, “
Large-eddy simulation of supercritical-pressure round jets
,”
AIAA J.
48
,
2133
(
2010
).
20.
J.-P.
Hickey
,
P.
Ma
,
M.
Ihme
, and
S.
Thakur
, AIAA Paper 2013-4071, 2013.
21.
L.
Cutrone
,
P.
de Palma
,
G.
Pascazio
, and
M.
Napolitano
, AIAA Paper 2008-4567, 2008.
22.
L.
Cutrone
,
P.
de Palma
,
G.
Pascazio
, and
M.
Napolitano
, “
A RANS flamelet–progress-variable method for computing reacting flows of real-gas mixtures
,”
Comput. Fluids
39
,
485
(
2010
).
23.
G.
Cheng
and
R.
Farmer
, AIAA Paper 2002-785, 2002.
24.
M.-M.
Jarczyk
and
M.
Pfitzner
, AIAA Paper 2012-1270, 2012.
25.
H.
Terashima
and
M.
Koshi
, “
Unique characteristics of cryogenic nitrogen jets under supercritical pressures
,”
J. Propul. Power
29
,
1328
(
2013
).
26.
E.
Antunes
,
A.
Silva
, and
J.
Barata
, AIAA Paper 2015-0469, 2014.
27.
W.
Mayer
,
J.
Telaar
,
R.
Branam
,
G.
Schneider
, and
J.
Hussong
, “
Raman measurements of cryogenic injection at supercritical pressure
,”
Heat Mass Transfer
39
,
709
(
2003
).
28.
R.
Branam
and
W.
Mayer
, “
Characterization of cryogenic injection at supercritical pressure
,”
J. Propul. Power
19
,
342
(
2003
).
29.
W.
Mayer
,
B.
Ivancic
,
A.
Schik
, and
U.
Hornung
, “
Propellant atomization and ignition phenomena in liquid oxygen/gaseous hydrogen rocket combustors
,”
J. Propul. Power
17
,
794
(
2001
).
30.
W.
Mayer
,
J.
Telaar
,
R.
Branam
,
G.
Schneider
, and
J.
Hussong
, AIAA Paper 2001-3275, 2001.
31.
B. A.
Younglove
, “
Thermophysical properties of fluids. I. Argon, Ethylene, Parahydrogen, Nitrogen, Nitrogen Trifluoride, and Oxygen
,”
J. Phys. Chem. Ref. Data
11
(
Suppl. 1
),
1
353
(
1982
).
32.
D.
Davis
and
B.
Chehroudi
, AIAA Paper 2004-1330, 2004.
33.
D.
Davis
and
B.
Chehroudi
, “
Measurements in an acoustically driven coaxial jet under sub-, near-, and supercritical conditions
,”
J. Propul. Power
23
,
364
(
2007
).
34.
NIST Chemistry Webbook
, edited by
P.
Linstrom
and
W.
Mallard
,
NIST Standard Reference Database Number 69
(
National Institute of Standards and Technology
,
Gaithersburg, MD 20899
,
2013
), http://webbook.nist.gov.
35.
J.
Newman
and
T.
Brzustowski
, “
Behavior of a liquid jet near the thermodynamic critical region
,”
AIAA J.
9
,
1595
(
1971
).
36.
B.
Chehroudi
, “
Recent experimental efforts on high-pressure supercritical injection for liquid rockets and their implications
,”
Int. J. Aerosp. Eng.
2012
,
121802
.
37.
R.
Span
,
E.
Lemmon
,
R.
Jacobsen
,
W.
Wagner
, and
A.
Yokozeki
, in
NIST Chemistry WebBook
, edited by
P.
Linstrom
and
W.
Mallard
,
NIST Standard Reference Database Number 69
(
National Institute of Standards and Technology
,
Gaithersburg, MD 20899, 2010
), http://webbook.nist.gov (retrieved 12 November 2010).
38.
N.
Zong
,
H.
Meng
, and
V.
Yang
, “
A numerical study of cryogenic fluid injection and mixing under supercritical conditions
,”
Phys. Fluids
16
,
4248
(
2004
).
39.
N.
Kafengauz
and
M.
Federov
, “
Pseudoboiling and heat transfer in a turbulent flow
,”
Inzh.-Fiz. Zh.
14
,
923
(
1968
).
40.
D.
Banuti
, “
Crossing the Widom-line—Supercritical pseudo-boiling
,”
J. Supercrit. Fluids
98
,
12
(
2015
).
41.
D.
Banuti
, “
Thermodynamic analysis and numerical modeling of supercritical injection
,” Ph.D. thesis,
University of Stuttgart
,
2015
.
42.
D.
Banuti
and
K.
Hannemann
, AIAA Paper 2011-5620, 2011.
43.
S.
Karl
, “
Numerical investigation of a generic scramjet configuration
,” Ph.D. thesis,
University of Dresden
,
2011
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-68695.
44.
T.
Gerhold
,
Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM)
(
Springer
,
2005
), Vol.
89
, pp.
81
92
.
45.
D.
Banuti
and
K.
Hannemann
, AIAA Paper 2013-4068, 2013.
46.
D.
Banuti
and
K.
Hannemann
, AIAA Paper 2014-3791, 2014.
47.
P.
Spalart
and
S.
Allmaras
, AIAA Paper No. AIAA-92-0439, 1992.
48.
D.
Banuti
,
V.
Hannemann
,
K.
Hannemann
, and
B.
Weigand
, “
An efficient multi-fluid-mixing model for real gas reacting flows in liquid propellant rocket engines
,”
Combust. Flame
(in press).
You do not currently have access to this content.