The paper focuses on an investigation into instability of Dean flows of nanofluids in curved channels restricted by two concentric cylinders. The flow is caused by a constant azimuthal pressure gradient. Critical values of the Dean number, which serves as the instability criterion, were found numerically by the collocation method. Functional dependencies of the critical Dean number on the ratio between the radii of the concave and convex walls (0.1…0.99), as well as dimensionless parameters describing the temperature gradient (−3…6), the relative density of the nanoparticles (0…4), the ratio of the Brownian and thermophoretic diffusion (0.1…0.9), Prandtl (0.1…10) and Schmidt (10…100) number were revealed. It was shown that an increase in the relative density of the nanoparticles, the ratio of the Brownian and thermophoretic diffusion, and Schmidt number causes instability under conditions of either positive or negative temperature gradients. An increase in the Prandtl number enforces flow stability for the negative temperature gradient and deteriorates stability for the positive temperature gradient. In light of the complexity of the physical problem in the present paper, only axisymmetric perturbations are considered as the first step to be further developed in future investigations.

1.
Y.
Wenhua
,
D. M.
France
,
J. L.
Routbort
, and
S. U. S.
Choi
, “
Review and comparison of nanofluid thermal conductivity and heat transfer enhancements
,”
Heat Transfer Eng.
29
(
5
),
432
460
(
2008
).
2.
S.
Kakac
and
A.
Pramuanjaroenkij
, “
Review of convective heat transfer enhancement with nanofluids
,”
Int. J. Heat Mass Transfer
52
,
3187
3196
(
2009
).
3.
S. K.
Das
,
S. U. S.
Choi
, and
H. E.
Patel
, “
Heat transfer in nanofluids: A review
,”
Heat Transfer Eng.
27
,
3
19
(
2006
).
4.
M. H.
Buschmann
, “
Nanofluids in thermosyphons and heat pipes: Overview of recent experiments and modelling approaches
,”
Int. J. Therm. Sci.
72
,
1
17
(
2013
).
5.
H.
Lotfi
and
M. B.
Shafii
, “
Boiling heat transfer on a high temperature silver sphere in nanofluid
,”
Int. J. Therm. Sci.
48
,
2215
2220
(
2009
).
6.
Z. H.
Liu
,
Y.-Y.
Li
, and
R.
Bao
, “
Thermal performance of inclined grooved heat pipes using nanofluids
,”
Int. J. Therm. Sci.
49
,
1680
1687
(
2010
).
7.
G.
Ramesh
and
N. K.
Prabhu
, “
Review of thermo-physical properties, wetting, and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment
,”
Nanoscale Res. Lett.
334
,
1
15
(
2011
).
8.
G.
Huminic
and
A.
Huminic
, “
Heat transfer characteristics of a two-phase closed thermosyphons using nanofluids
,”
Exp. Therm. Fluid Sci.
35
(
3
),
550
557
(
2011
).
9.
A. A.
Avramenko
,
D. G.
Blinov
, and
I. V.
Shevchuk
, “
Self-similar analysis of fluid flow and heat-mass transfer of nanofluids in boundary layer
,”
Phys. Fluids
23
,
082002
(
2011
).
10.
A. A.
Avramenko
,
D. G.
Blinov
,
I. V.
Shevchuk
, and
A. V.
Kuznetsov
, “
Symmetry analysis and self-similar forms of fluid flow and heat-mass transfer in turbulent boundary layer flow of a nanofluid
,”
Phys. Fluids
24
,
092003
(
2012
).
11.
A. A.
Avramenko
,
I. V.
Shevchuk
,
A. I.
Tyrinov
, and
D. G.
Blinov
, “
Heat transfer at film condensation of stationary vapor with nanoparticles near a vertical plate
,”
Appl. Therm. Eng.
73
(
1
),
389
396
(
2014
).
12.
A. A.
Avramenko
,
I. V.
Shevchuk
,
A. I.
Tyrinov
, and
D. G.
Blinov
, “
Heat transfer at film condensation of moving vapor with nanoparticles over a flat surface
,”
Int. J. Heat Mass Transfer
82
,
316
324
(
2015
).
13.
A. A.
Avramenko
,
I. V.
Shevchuk
,
A. I.
Tyrinov
, and
D. G.
Blinov
, “
Heat transfer in stable film boiling of a nanofluid over a vertical surface
,”
Int. J. Therm. Sci.
92
,
106
118
(
2015
).
14.
A. K.
Singh
and
V. S.
Raykar
, “
Microwave synthesis of silver nanofluids with polyvinylpyrrolidone (PVP) and their transport properties
,”
Colloid Polym. Sci.
286
(
14-15
),
1667
1673
(
2008
).
15.
I. M.
Joni
,
A.
Purwanto
,
F.
Iskandar
, and
K.
Okuyama
, “
Dispersion stability enhancement of titania nanoparticles in organic solvent using a bead mill process
,”
Ind. Eng. Chem. Res.
48
(
15
),
6916
6922
(
2009
).
16.
I. M.
Joni
,
C.
Panatarani
,
D.
Hidayat
,
Setianto
,
B. M.
Wibawa
,
A.
Rianto
, and
H.
Thamrin
, “
Synthesis and dispersion of nanoparticles, and Indonesian graphite processing
,”
AIP Conf. Proc.
1554
,
20
26
(
2013
).
17.
M.
Jung
,
C.
Choi
, and
J.
Oh
, “
Optimum operating parameters of a beads mill for an AlN containing nanofluids
,”
J. Nanosci. Nanotechnol.
11
(
1
),
507
510
(
2011
).
18.
L.
Fedele
,
L.
Colla
,
S.
Bobbo
,
S.
Barison
, and
F.
Agresti
, “
Experimental stability analysis of different water-based nanofluids
,”
Nanoscale Res. Lett.
6
,
300
(
2011
).
19.
Z.
Haddad
,
C.
Abid
, and
A.
Mataoui
, “
A review on how the researchers prepare their nanofluids
,”
Int. J. Therm. Sci.
76
,
168
189
(
2014
).
20.
A.
Shylaja
,
S.
Manikandan
,
K.
Suganthi
, and
K.
Rajan
, “
Preparation and thermo-physical properties of Fe2O3-propylene glycol nanofluids
,”
J. Nanosci. Nanotechnol.
15
(
2
),
1653
1659
(
2015
).
21.
R. E.
Rosensweig
,
Ferrohydrodynamics
(
Courier Corporation
,
1997
).
22.
J.
Walowit
,
S.
Tsao
, and
R.
Diprima
, “
Stability of flow between arbitrarily spaced concentric cylindrical surfaces including the effect of a radial temperature gradient
,”
J. Appl. Mech.
31
,
585
593
(
1964
).
23.
C.
Kang
,
K.
Yang
, and
I.
Mutabasi
, “
The effect of radial temperature gradient on the circular-Couette flow
,”
Trans. KSCFE
14
,
16
24
(
2009
).
24.
I.
Mutabasi
,
R.
Guillerm
,
A.
Prigent
,
V.
Lepiller
, and
S.
Malik
, “
Flow instabilities in a vertical differentially rotating cylindrical annulus with a radial temperature gradient
,”
EUROMECH Colloq.
52
,
1
3
(
2011
).
25.
M.
Auser
,
F.
Busse
, and
E.
Gangler
, “
Instabilities of flows between differentially rotating coaxial vertical cylinders in the presence of a radial temperature gradient
,”
Eur. J. Mech.
15
,
605
618
(
1996
).
26.
J.
Herrmann
and
F.
Busse
, “
Convection in a rotating cylindrical annulus. Part 4. Modulations and transition to chaos at low Prandtl numbers
,”
J. Fluid Mech.
350
,
209
229
(
1997
).
27.
C.-S.
Yih
, “
Dual role of viscosity in the instability of revolving fluids of variable density
,”
Phys. Fluids
4
(
7
),
806
811
(
1961
).
28.
W.
Lai
, “
Stability of a revolution fluid with variable density in the presence of a circular magnetic fluid
,”
Phys. Fluids
5
,
560
566
(
1962
).
29.
K. M.
Becker
and
J.
Kaye
, “
The influence of a radial temperature gradient on the instability of fluid flow in an annulus with an inner rotating cylinder
,”
J. Heat Transfer
84
(
2
),
106
110
(
1962
).
30.
F. C.
Haas
and
A. H.
Nissan
, “
Experimental heat transfer characteristics of a liquid in Couette motion and with Taylor vortices
,”
Proc. R. Soc. London, Ser. A
261
,
215
226
(
1961
).
31.
C. Y.
Ho
,
J. L.
Nardacci
, and
A. H.
Nissan
, “
Heat transfer characteristics of fluids moving in a Taylor system of vortices
,”
AIChE J.
10
(
2
),
194
202
(
1964
).
32.
I. S.
Bjorklund
and
W. M.
Kays
, “
Heat transfer between concentric rotating cylinders
,”
J. Heat Transfer
81
,
175
186
(
1959
).
33.
K. M.
Becker
and
J.
Kaye
, “
Measurements of diabatic flow in an annulus with an inner rotating cylinder
,”
J. Heat Transfer
84
(
2
),
97
104
(
1962
).
34.
M. E.
Ali
and
P. D.
Weidman
, “
On the stability of circular Couette flow with radial heating
,”
J. Fluid Mech.
220
,
53
84
(
1990
).
35.
R.
Guillerm
,
C.
Kang
,
C.
Savaro
,
V.
Lepiller
,
A.
Prigent
,
K. S.
Yang
, and
I.
Mutabazi
, “
Flow regimes in a vertical Taylor-Couette system with a radial thermal gradient
,”
Phys. Fluids
27
,
094101
(
2015
).
36.
C.
Kang
,
K.-S.
Yang
, and
I.
Mutabazi
, “
Thermal effect on large-aspect-ratio Couette-Taylor system: Numerical simulations
,”
J. Fluid Mech.
771
,
57
78
(
2015
).
37.
D. C.
Kuo
and
K. S.
Ball
, “
Taylor-Couette flow with buoyancy: Onset of spiral flow
,”
Phys. Fluids
9
(
10
),
2872
2884
(
1997
).
38.
V.
Lepiller
,
A.
Goharzadeh
,
A.
Prigent
, and
I.
Mutabazi
, “
Weak temperature gradient effect on the stability of the circular Couette flow
,”
Eur. J. Phys. B
61
(
4
),
445
455
(
2008
).
39.
H. A.
Snyder
and
S. K. F.
Karlsson
, “
Experiments on the stability of Couette motion with a radial temperature gradient
,”
Phys. Fluids
7
,
1696
1706
(
1964
).
40.
M. M.
Sorour
and
J. E. R.
Coney
, “
The effect of temperature gradient on the stability of flow between vertical, concentric, rotating cylinders
,”
J. Mech. Eng. Sci.
21
(
6
),
403
409
(
1979
).
41.
H. N.
Yoshikawa
,
M.
Nagata
, and
I.
Mutabazi
, “
Instability of the vertical annular flow with a radial heating and rotating inner cylinder
,”
Phys. Fluids
25
(
11
),
114104
(
2013
).
42.
A. V.
Kuznetsov
and
D. A.
Nield
, “
Natural convective boundary-layer flow of a nanofluid past a vertical plate
,”
Int. J. Therm. Sci.
49
,
243
247
(
2010
).
43.
D. A.
Nield
and
A. V.
Kuznetsov
, “
The onset of convection in a horizontal nanofluid layer of finite depth
,”
Eur. J. Mech., B: Fluids
29
,
217
223
(
2010
).
44.
W. R.
Dean
, “
Fluid motion in a curved channel
,”
Proc. R. Soc. A
122
,
402
420
(
1928
).
45.
W. H.
Reid
, “
On the stability of viscous flow in a curved channel
,”
Proc. R. Soc. A
244
,
186
198
(
1958
).
46.
G.
Hämmerlin
, “
Die stabilität der strömung in einem gekrümmten kanal
,”
Arch. Ration. Mech. Anal.
1
,
212
224
(
1958
).
47.
C. A. J.
Fletcher
,
Computational Galerkin Method
(
Springer-Verlag
,
New York
,
1984
).
48.
L. N.
Trefethen
and
M.
Embree
,
Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators
(
Princeton University Press
,
2005
).
49.
Y. L.
Ding
and
D.
Wen
, “
Particle migration in a flow of nanoparticle suspensions
,”
Powder Technol.
149
,
84
92
(
2005
).
50.
J.
Buongiorno
,
D. C.
Venerus
,
N.
Prabhat
,
T.
McKrell
,
J.
Townsend
,
R.
Christianson
,
Y. V.
Tolmachev
,
P.
Keblinski
,
L.
Hu
,
J. L.
Alvarado
,
I. C.
Bang
,
S. W.
Bishnoi
,
M.
Bonetti
,
F.
Botz
,
A.
Cecere
,
Y.
Chang
,
G.
Chen
,
H.
Chen
,
S. J.
Chung
,
M. K.
Chyu
,
S. K.
Das
,
R.
Di Paola
,
Y.
Ding
,
F.
Dubois
,
G.
Dzido
,
J.
Eapen
,
W.
Escher
,
D.
Funfschilling
,
Q.
Galand
,
J.
Gao
,
P. E.
Gharagozloo
,
K. E.
Goodson
,
J. G.
Gutierrez
,
H.
Hong
,
M.
Horton
,
K. S.
Hwang
,
C. S.
Iorio
,
S. P.
Jang
,
A. B.
Jarzebski
,
Y.
Jiang
,
L.
Jin
,
S.
Kabelac
,
A.
Kamath
,
M. A.
Kedzierski
,
L. G.
Kieng
,
J.
Kim
,
S.
Kim
,
S. H.
Kim
,
K. C.
Lee
,
I.
Leong
,
B.
Manna
,
R.
Michel
,
H.
Ni
,
E.
Patel
,
J.
Philip
,
D.
Poulikakos
,
C. C.
Reynaud
,
R.
Savino
,
P. K.
Singh
,
P.
Song
,
T.
Sundararajan
,
E.
Timofeeva
,
T.
Tritcak
,
A. N.
Turanov
,
S.
Van Vaerenbergh
,
D.
Wen
,
S.
Witharana
,
C.
Yang
,
W.
Yeh
,
X.
Zhao
, and
S.
Zhou
, “
A benchmark study on the thermal conductivity of nanofluids
,”
J. Appl. Phys.
106
,
094312
(
2009
).
51.
B. C.
Pak
and
Y. I.
Cho
, “
Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles
,”
Exp. Heat Transfer
11
,
151
170
(
1998
).
You do not currently have access to this content.