Propagation of gravity-capillary surface waves on a background shear flow with a constant vorticity is studied and compared with the case when the background flow is uniform in depth. Under the assumption that the background flow gradually varies in the horizontal direction, the primary attention is paid to the wave blocking phenomenon; the effect of vorticity on this phenomenon is studied in detail. The conditions for wave blocking are obtained and categorized for different values of the governing dimensionless parameters: Froude number, dimensionless vorticity, and surface tension.
REFERENCES
1.
S. I.
Badulin
, K. V.
Pokazeyev
, and A. D.
Rozenberg
, “A laboratory study of the transformation of regular gravity-capillary waves in inhomogeneous flows
,” Izv. Atmos. Oceanic Phys.
19
(10
), 782
–787
(1983
).2.
T. B.
Benjamin
, “The threefold classification of unstable disturbances in flexible surfaces bounding inviscid flows
,” J. Fluid Mech.
16
, 436
–450
(1963
).3.
F.
Biesel
, “Etude théorique de la houle en eau courante
,” Houille Blanche
5
, 279
–285
(1950
).4.
I.
Brevik
, “The stopping of linear gravity waves in currents of uniform vorticity
,” Phys. Norv.
8
, 157
–162
(1976
).5.
J. C.
Burns
, “Long waves in running water
,” Proc. Cambridge Philos. Soc.
49
, 695
–705
(1953
).6.
R. A.
Cairns
, “The role of negative energy waves in some instabilities of parallel flows
,” J. Fluid Mech.
92
, 1
–14
(1979
).7.
W.
Choi
, “Nonlinear surface waves interacting with a linear shear current
,” Math. Comput. Simul.
80
, 29
–36
(2009
).8.
9.
S. A.
Ellingsen
and I.
Brevik
, “How linear surface waves are affected by a current with constant vorticity
,” Eur. J. Phys.
35
, 025005
(2014
).10.
J. D.
Fenton
, “Some results for surface gravity waves on shear flows
,” J. Inst. Math. Its Appl.
12
, 1
–20
(1973
).11.
T. S.
Hedges
, “Combinations of waves and currents: An introduction
,” Proc. - Inst. Civ. Eng.
82
, 567
–585
(1987
).12.
I. G.
Jonsson
, “Wave-current interactions
,” in The Sea
, edited by B.
Le Mehaute
and D. M.
Hanes
(John Wiley
, 1990
), pp. 65
–120
.13.
I.
Kantardgi
, “Effect of depth current profile on wave parameters
,” Coastal Eng.
26
(3–4
), 195
–206
(1995
).14.
I. G.
Kantarzhi
, I. L.
Makarova
, and Ye. N.
Pelinovskiy
, “Wave transformation by a current having linear velocity shear with depth
,” Oceanology
29
(2
), 145
–150
(1989
).15.
B. B.
Kadomtsev
, A. B.
Mikhailovskii
, and A. V.
Timofeev
, “Negative energy waves in dispersive media
,” Sov. Phys. JETP
47
, 2267
–2269
(1964
).16.
P.
Karageorgis
, “Dispersion relation for water waves with non-constant vorticity
,” Eur. J. Mech. B: Fluids
34
, 7
–12
(2012
).17.
J. T.
Kirby
and T. M.
Chen
, “Surface waves on vertically sheared flows: Approximate dispersion relations
,” J. Geophys. Res.
94
, 1013
–1027
, doi:10.1029/JC094iC01p01013 (1989
).18.
Ch.
Kharif
, E.
Pelinovsky
, and A.
Slunyaev
, Rogue Waves in the Ocean
(Springer
, 2009
), p. 216
.19.
L. D.
Landau
and E. M.
Lifshitz
, Hydrodynamics. Course of Theoretical Physics
, 5th ed. (Fizmatlit
, Moscow
, 2006
), Vol. 6
(in Russian)[English translation:
L. D.
Landau
and E. M.
Lifshitz
, Fluid Mechanics
, 2nd ed. (Pergamon Press
, Oxford
, 1987
)].20.
21.
H.
Margaretha
, “Mathematical modelling of wave-current interaction in a hydrodynamic laboratory basin
,” Ph.D. dissertation, University of Twente
, Enschede, The Netherlands,2005
.22.
A. B.
Mikhailovskii
, Theory of Plasma Instabilities, V. 1 (1975)
, 2nd ed. (Atomizdat
, Moscow
, 1977
), Vol. 2
(in Russian) [English version: Consultants Bureau, NY, 1974].23.
J.-C.
Nardin
, G.
Rousseaux
, and P.
Coullet
, “Wave-current interaction as a spatial dynamical system: Analogies with rainbow and black hole physics
,” Phys. Rev. Lett.
102
(12
), 124504
(2009
).24.
H. M.
Nepf
and S. G.
Monismith
, “Wave-dispersion on a sheared current
,” Appl. Ocean. Res.
16
(5
), 313
–315
(1994
).25.
M. V.
Nezlin
, “Negative-energy waves and the anomalous Doppler effect
,” Sov. Phys. Usp.
19
, 946
–954
(1976
).26.
L. A.
Ostrovsky
, S. A.
Rybak
, and L. Sh.
Tsimring
, “Negative energy waves in hydrodynamics
,” Sov. Phys. Usp.
29
(11
), 1040
–1052
(1986
).27.
D. H.
Peregrine
, “Interaction of water waves and currents
,” Adv. Appl. Mech.
16
, 9
–117
(1976
).28.
K. V.
Pokazeyev
and A. D.
Rozenberg
, “Laboratory studies of regular gravity-capillary waves in currents
,” Okeanologiya
23
(4
), 429
–435
(1983
).29.
A. K.
Pramanik
, “Capillary-gravity waves produced by a moving pressure distribution
,” ZAMP
31
, 174
–180
(1980
).30.
G.
Rousseaux
, P.
Maïssa
, C.
Mathis
, P.
Coullet
, T. G.
Philbin
, and U.
Leonhardt
, “Horizon effects with surface waves on moving water
,” New J. Phys.
12
, 095018
(2010
).31.
P.
Maïssa
, G.
Rousseaux
, and Y.
Stepanyants
, “Negative energy waves in shear flow with a linear profile
,” Eur. J. Mech. B: Fluids
56
, 192
–199
(2016
).32.
V. I.
Shrira
, “On the sub-surface waves of the mixed layer of the upper ocean
,” Dokl. Akad. Nauk SSSR
308
, 732
–736
(1989
)[English translation:
V. I.
Shrira
, “On the sub-surface waves of the mixed layer of the upper ocean
,” Doklady USSR Acad. Sci.
308
, 276
–279
(1989
)].33.
J.-H.
Shyu
and O. M.
Phillips
, “The blockage of gravity and capillary waves by longer waves and currents
,” J. Fluid Mech.
217
, 115
–141
(1990
).34.
R. A.
Skop
, “Approximated dispersion relation for wave-current interactions
,” J. Waterw., Port, Coastal, Ocean Eng.
113
, 187
–195
(1987
).35.
Yu. A.
Stepanyants
and A. L.
Fabrikant
, “Propagation of waves in hydrodynamic shear flows
,” Sov. Phys. Usp.
32
(9
), 783
–805
(1989
).36.
Yu. A.
Stepanyants
and A. L.
Fabrikant
, Propagation of Waves in Shear Flows
(Nauka Fizmatlit
, Moscow
, 1992
) (in Russian) [English version: (World Scientific, Singapore, 1998)].37.
C.
Swan
and R. L.
James
, “A simple analytical model for surface water waves on a depth-varying current
,” Appl. Ocean Res.
22
, 331
–347
(2001
).38.
G. I.
Taylor
, “The action of a surface current as a breakwater
,” Proc. R. Soc. A
231
, 466
–478
(1955
).39.
G. P.
Thomas
and G.
Klopman
, “Wave-current interactions in the nearshore region
,” inGravity Waves in Water of Finite Depth
, edited byJ. N.
Hunt
, Advances in Fluid Mechanics
(CMP
, Southampton
, 1997
), Vol. 10
.40.
P. D.
Thompson
, “The propagation of small surface disturbance through rotational flow
,” Ann. N. Y. Acad. Sci.
5
, 463
–474
(1949
).41.
K.
Trulsen
and C. C.
Mei
, “Double reflection of capillarylgravity waves by a non-uniform current: A boundary-layer theory
,” J. Fluid Mech.
251
, 239
–271
(1993
).42.
S.
Tsao
, “Behaviour of surface waves on linearly varying currents
,” J. Geophys. Res.
79
, 4498
–4508
(1957
).43.
E.
Wahlen
, “On rotational water waves with surface tension
,” Philos. Trans. R. Soc., A
365
, 2215
–2225
(2007
).© 2016 AIP Publishing LLC.
2016
AIP Publishing LLC
You do not currently have access to this content.