Relaxation processes of polyatomic molecules are modeled and implemented in an in-house Direct Simulation Monte Carlo code in order to enable the simulation of atmospheric entry maneuvers at Mars and Saturn’s Titan. The description of rotational and vibrational relaxation processes is derived from basic quantum-mechanics using a rigid rotator and a simple harmonic oscillator, respectively. Strategies regarding the vibrational relaxation process are investigated, where good agreement for the relaxation time according to the Landau-Teller expression is found for both methods, the established prohibiting double relaxation method and the new proposed multi-mode relaxation. Differences and applications areas of these two methods are discussed. Consequently, two numerical methods used for sampling of energy values from multi-dimensional distribution functions are compared. The proposed random-walk Metropolis algorithm enables the efficient treatment of multiple vibrational modes within a time step with reasonable computational effort. The implemented model is verified and validated by means of simple reservoir simulations and the comparison to experimental measurements of a hypersonic, carbon-dioxide flow around a flat-faced cylinder.

1.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Oxford University Press
,
Oxford
,
1994
), p.
476
.
2.
W.
Wagner
, “
A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation
,”
J. Stat. Phys.
66
,
1011
1044
(
1992
).
3.
I. D.
Boyd
, “
Computation of hypersonic flows using the direct simulation Monte Carlo method
,”
J. Spacecr. Rockets
52
,
38
53
(
2015
).
4.
B. L.
Haas
,
D. B.
Hash
,
G. A.
Bird
,
F. E.
Lumpkin
, and
H. A.
Hassan
, “
Rates of thermal relaxation in direct simulation Monte Carlo methods
,”
Phys. Fluids
6
,
2191
(
1994
).
5.
S. F.
Gimelshein
,
M. S.
Ivanov
, and
I. D.
Boyd
, “
Modeling of internal energy transfer of polyatomic molecules in rarefied plume flows
,” in
37th AIAA Aerospace Sciences Meeting and Exhibit
(
AIAA
,
Reston, Virigina
,
1999
).
6.
Y. A.
Bondar
,
S. F.
Gimelshein
,
G. N.
Markelov
, and
M. S.
Ivanov
, “
DSMC study of the internal shock-wave structure in a dissociating gas
,” in
37th AIAA Thermophysics Conference
(
AIAA
,
Reston, Virigina
,
2004
), pp.
1
12
.
7.
S. J.
Poovathingal
,
T. E.
Schwartzentruber
,
V.
Murray
, and
T.
Minton
, “
Molecular simulations of surface ablation using reaction probabilities from molecular beam experiments and realistic microstructure
,” in
53rd AIAA Aerospace Sciences Meeting
(
American Institute of Aeronautics and Astronautics
,
Reston, Virginia
,
2015
), pp.
1
18
.
8.
C.-D.
Munz
,
M.
Auweter-Kurtz
,
S.
Fasoulas
,
A.
Mirza
,
P.
Ortwein
,
M.
Pfeiffer
, and
T.
Stindl
, “
Coupled particle-in-cell and direct simulation Monte Carlo method for simulating reactive plasma flows
,”
C. R. Mec.
342
,
662
670
(
2014
).
9.
G.
Herzberg
and
J.
Spinks
,
Molecular Spectra and Molecular Structure: Infrared and Raman Spectra of Polyatomic Molecules
(
Prentice-Hall
,
1945
).
10.
E.
Wilson
,
Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra
(
McGraw-Hill Interamericana
,
1955
).
11.
W.
Demtröder
,
Laser Spectroscopy: Basic Concepts and Instrumentation
,
Advanced Texts in Physics
(
Springer
,
2003
).
12.
C. N.
Hinshelwood
,
Kinetics of Chemical Change
(
Clarendon Press
,
Oxford
,
1940
).
13.
S.
Chib
and
E.
Greenberg
, “
Understanding the Metropolis-Hastings algorithm
,”
Am. Stat.
49
,
327
335
(
1995
).
14.
W. K.
Hastings
, “
Monte carlo sampling methods using Markov chains and their applications
,”
Biometrika
57
,
97
109
(
1970
).
15.
C.
Borgnakke
and
P. S.
Larsen
, “
Statistical collision model for Monte Carlo simulation of polyatomic gas mixture
,”
J. Comput. Phys.
18
,
405
420
(
1975
).
16.
F.
Bergemann
and
I.
Boyd
, “
New discrete vibrational energy model for the direct simulation Monte Carlo method
,” in
Rarefied Gas Dynamics: Experimental Techniques and Physical Systems. Proceedings of the 18th International Symposium
, edited by
B. D.
Shizgal
and
D. P.
Weaver
(
AIAA
,
Washington
,
1994
), vol. 158 of Progress in Astronautics and Aeronautics, pp. 174–183.
17.
G. A.
Bird
,
The DSMC Method
(
CreateSpace
,
2013
).
18.
NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 16a, edited by R. D. Johnson III (NIST, 2013).
19.
C.
Zhang
and
T. E.
Schwartzentruber
, “
Inelastic collision selection procedures for direct simulation Monte Carlo calculations of gas mixtures
,”
Phys. Fluids
25
,
106105
(
2013
).
20.
N. E.
Gimelshein
,
S. F.
Gimelshein
, and
D. A.
Levin
, “
Vibrational relaxation rates in the direct simulation Monte Carlo method
,”
Phys. Fluids
14
,
4452
(
2002
).
21.
V.
Borovoy
,
A.
Skuratov
,
I.
Struminskaya
, and
E.
Zaitsev
, Results of experimental study in TsAGI IT-2 Hot Shot wind tunnel, SACOMAR Technologies for Safe and Controlled Martian Entry, Deliverable Reference Number: D 5.3, 2012.
You do not currently have access to this content.