The local interactions occurring between incident and reflected shock waves in the vicinity of rigid surfaces are investigated. Both regular and irregular — also called von Neumann — regimes of reflection are studied, via experimental and numerical simulations. Shock waves are produced experimentally with a 20 kV electrical spark source which allows the generation of spherically diverging acoustic shocks. The behaviour of the resulting weak acoustic shocks near rigid boundaries is visualized with a Schlieren optical technique which allows the spatial structure of the shocks to be studied. In particular, the evolution of the Mach stem forming above a flat surface is examined, and its height is observed to be directly linked to the angle of incidence and the pressure amplitude of the incident shock. The propagation of an acoustic shock between two parallel rigid boundaries is also studied. It is shown that the strong interactions between the Mach stems emerging from the two boundaries can lead to a drastic modification of the morphology of the acoustic field in the waveguide. Experimental results are compared to numerical results obtained from high-order finite-difference based simulations of the 2D Navier-Stokes equations. The good agreement between the experimental distribution of the acoustic field and numerical results suggests that numerical simulations are promising as a predictive tool to study nonlinear acoustic propagation of acoustic waves in complex geometrical configurations with rigid boundaries.

1.
E.
Mach
, “
Über den Verlauf von Funkenwellen in der Ebene und im Raume
,”
Sitzungsbr. Akad. Wiss. Wien
78
,
819
838
(
1878
).
2.
G.
Ben-Dor
,
Shock Wave Reflection Phenomena
(
Springer
,
1992
).
3.
J.
von Neumann
, “
Oblique reflection of shock
,” in
Collected Works of John von Neumann
(
Pergamon Press
,
MacMillan, New York
,
1963
), Vol.
VI
, pp.
238
299
.
4.
P.
Colella
and
L. F.
Henderson
, “
The von Neumann paradox for diffraction of a weak shock wave
,”
J. Fluid. Mech.
212
,
71
94
(
1990
).
5.
B.
Birkhoff
,
Hydrodynamics, a Study in Logic, Fact and Similitude
(
Princeton University Press
,
1950
).
6.
V. W.
Sparrow
and
P.
Raspet
, “
A numerical method for general finite amplitude wave propagation in two dimensions and its application to spark pulses
,”
J. Acoust. Soc. Am.
90
(
5
),
2683
2691
(
1991
).
7.
S.
Baskar
,
F.
Coulouvrat
, and
R.
Marchiano
, “
Nonlinear reflection of grazing acoustic shock waves: Unsteady transition from von Neumann to Mach to Snell-Descartes reflections
,”
J. Fluid. Mech.
575
,
27
55
(
2007
).
8.
E. A.
Zabolotskaya
and
V. R.
Khokhlov
, “
Quasi-plane waves in the nonlinear acoustics of confined beams
,”
Sov. Phys. Acoust.
15
,
35
40
(
1969
).
9.
M.
Brio
and
J. K.
Hunter
, “
Mach reflection for the two-dimensional Burgers equation
,”
Physica D
60
,
194
207
(
1992
).
10.
R.
Marchiano
,
F.
Coulouvrat
,
S.
Baskar
, and
J. L.
Thomas
, “
Experimental evidence of deviation from mirror reflection for acoustical shock waves
,”
Phys. Rev. E
76
,
056602
(
2007
).
11.
M.
Karzova
,
V.
Khokhlova
,
E.
Salze
,
S.
Ollivier
, and
P.
Blanc-Benon
, “
Mach stem formation in reflection and focusing of weak shock acoustic pulses
,”
J. Acoust. Soc. Am.
137
(
6
),
EL436
(
2015
).
12.
M.
Karzova
,
P.
Yuldashev
,
V.
Khokhlova
,
S.
Ollivier
, and
P.
Blanc-Benon
, “
Application of a Mach-Zehnder interferometer to the observation of Mach stem formation when a shock wave is reflected from a rigid surface
,”
Bull. Russ. Acad. Sci.: Phys.
79
(
10
),
1293
(
2015
).
13.
J.
Picaut
and
L.
Simon
, “
A scale model experiment for the study of sound propagation in Urban areas
,”
Appl. Acoust.
62
(
3
),
327
-
340
(
2001
).
14.
W. M.
Wright
, “
Propagation in air of N waves produced by sparks
,”
J. Acoust. Soc. Am.
73
(
6
),
1948
-
1955
(
1983
).
15.
C.
Ayrault
,
P.
Béquin
, and
S.
Baudin
, “
Characteristics of a spark discharge as an adjustable acoustic source for scale model measurements
,” in
Proceedings of the Acoustics 2012, Nantes, France
(
Société Française d’Acoustique
,
2012
), pp.
1112
-
1115
.
16.
G. S.
Settles
,
Schlieren and Shadowgraph Techniques
(
Springer
,
2001
).
17.
B.
André
,
T.
Castelain
, and
C.
Bailly
, “
Shock-tracking procedure for studying screech-induced oscillations
,”
AIAA J.
49
(
7
), (
2011
).
18.
M.
Karzova
,
P.
Yuldashev
,
V.
Khokhlova
,
S.
Ollivier
,
E.
Salze
, and
P.
Blanc-Benon
, “
Characterization of spark-generated N-waves in air using an optical schlieren method
,”
J. Acoust. Soc. Am.
137
(
6
),
3244
-
3252
(
2015
).
19.
W. E.
Lorenson
and
H. E.
Cline
, “
Marching cubes: A high resolution 3D surface construction algorithm
,”
ACM SIGGRAPH Comput. Graphics
21
(
4
),
163
-
170
(
1987
).
20.
P.
Yuldashev
,
M.
Karzova
,
V.
Khoklova
,
S.
Ollivier
, and
P.
Blanc-Benon
, “
Mach-Zehnder interferometry method for acoustic shock wave measurements in air and broadband calibration microphones
,”
J. Acoust. Soc. Am.
137
(
6
),
3314
-
3324
(
2015
).
21.
G.
Smeets
, “
Laser interference microphone for ultrasonics and nonlinear acoustics
,”
J. Acoust. Soc. Am.
61
(
3
),
872
-
875
(
1977
).
22.
J. W.
Reed
, “
Atmospheric attenuation of explosion waves
,”
J. Acoust. Soc. Am.
61
,
39
-
47
(
1977
).
23.
P.
Yuldashev
,
S.
Ollivier
,
M.
Averiyanov
,
O.
Sapozhnikov
,
V.
Khoklova
, and
P.
Blanc-Benon
, “
Nonlinear propagation of spark-generated N-waves in air: Modeling and measurements using acoustical and optical methods
,”
J. Acoust. Soc. Am.
128
(
6
),
3321
-
3333
(
2010
).
24.
E.
Salze
,
P.
Yuldashev
,
S.
Ollivier
,
V.
Khokhlova
, and
P.
Blanc-Benon
, “
Laboratory-scale experiments to study nonlinear N-wave distortion by thermal turbulence
,”
J. Acoust. Soc. Am.
136
(
2
),
556
-
566
(
2014
).
25.
O.
Marsden
,
C.
Bogey
, and
C.
Bailly
, “
A study of infrasound propagation based on high-order finite difference solutions of the Navier-Stokes equations
,”
J. Acoust. Soc. Am.
135
(
3
),
1083
1095
(
2014
).
26.
C.
Bogey
and
C.
Bailly
, “
A family of low dispersive and low dissipative explicit schemes for noise computation
,”
J. Comput. Phys.
194
(
1
),
194
214
(
2004
).
27.
C.
Bogey
,
N.
De Cacqueray
, and
C.
Bailly
, “
A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations
,”
J. Comput. Phys.
228
,
1447
1465
(
2009
).
28.
C.
de Groot-Hedlin
, “
Finite-difference time-domain synthesis of infrasound propagation though an absorbing atmosphere
,”
J. Acoust. Soc. Am.
124
(
3
),
1430
-
1441
(
2008
).
29.
P.
Yuldashev
,
M.
Averiyanov
,
V.
Khokhlova
,
S.
Ollivier
, and
P.
Blanc-Benon
, “
Nonlinear spherically divergent shock waves propagating in a relaxing medium
,”
Acoust. Phys.
54
(
1
),
32
-
41
(
2008
).
You do not currently have access to this content.