A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach. The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.

1.
M. J.
Wright
,
D.
Bose
,
G. E.
Palmer
, and
E.
Levin
, “
Recommended collision integrals for transport property computations Part 1: Air species
,”
AIAA J.
43
,
2558
2564
(
2005
).
2.
E.
Levin
and
M. J.
Wright
, “
Collision integrals for ion-neutral interactions of nitrogen and oxygen
,”
J. Thermophys. Heat Transfer
18
,
143
147
(
2004
).
3.
M. J.
Wright
and
E.
Levin
, “
Collision integrals for ion-neutral interactions of air and argon
,”
J. Thermophys. Heat Transfer
19
,
127
128
(
2005
).
4.
E.
Levin
,
H.
Partridge
, and
J. R.
Stallcop
, “
Collision integrals and high temperature transport properties for N-N, O-O, and N-O
,”
J. Thermophys. Heat Transfer
4
,
469
477
(
1990
).
5.
H.
Partridge
,
J. R.
Stallcop
, and
E.
Levin
, “
Transport cross sections and collision integrals for N(4so)-O+ (4so) and N+ (3p)-O(3p) interactions
,”
Chem. Phys. Lett.
184
,
505
512
(
1991
).
6.
J. R.
Stallcop
,
H.
Partridge
, and
E.
Levin
, “
Resonance charge transfer, transport cross sections, and collision integrals for N+(3p)N(4s0) and O+(4s0)O(3p) interactions
,”
J. Chem. Phys.
95
,
6429
6439
(
1991
).
7.
J. R.
Stallcop
,
H.
Partridge
, and
E.
Levin
, “
Effective potential energies and transport cross sections for interactions of hydrogen and nitrogen
,”
Phys. Rev. A
62
,
062709
(
2000
).
8.
J. R.
Stallcop
,
H.
Partridge
, and
E.
Levin
, “
Effective potential energies and transport cross sections for atom-molecule interactions of nitrogen and oxygen
,”
Phys. Rev. A
64
,
042722
(
2001
).
9.
T. F.
Moran
,
M. R.
Flannery
, and
P. C.
Cosby
, “
Molecular charge transfer. II. Experimental and theoretical investigation of the role of incident-ion vibrational states in O2+–O2 and NO+NO collisions
,”
J. Chem. Phys.
61
,
1261
1273
(
1974
).
10.
A. V.
Phelps
, “
Cross sections and swarm coefficients for nitrogen ions and neutrals in N2 and argon ions and neutrals in Ar for energies from 0.1 eV to 10 keV
,”
J. Phys. Chem. Ref. Data
20
,
557
573
(
1991
).
11.
G. E.
Palmer
and
M. J.
Wright
, “
Comparison of methods to compute high-temperature gas viscosity
,”
J. Thermophys. Heat Transfer
17
(
2
),
232
(
2003
).
12.
R.
Gupta
,
J.
Yos
, and
R.
Thompson
, “A review of reaction rates and thermodynamics and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30 000 K,” NASA TM 101528, February 1989.
13.
J. M.
Yos
, “Transport properties of nitrogen, hydrogen, oxygen, and air to 30 000 K,” (No. TM-63-7). Avco Corp., Wilmington MA Research and Advanced Development Div., 1963.
14.
C. R.
Wilke
, “
A viscosity equation for gas mixtures
,”
J. Chem. Phys.
18
(
4
),
517
-
519
(
1950
).
15.
B.
Armaly
and
K.
Sutton
, “
Viscosity of multicomponent partially ionized gas mixtures
,” in
15th Thermophysics Conference
(
American Institute of Aeronautics and Astronautics
,
1980
).
16.
G.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Oxford University Press
,
Oxford
,
1994
).
17.
K.
Koura
and
H.
Matsumoto
, “
Variable soft sphere molecular model for inverse-power-law or Lennard-Jones potential
,”
Phys. Fluids A
3
,
2459
-
2465
(
1991
).
18.
T. D.
Holman
, “
Numerical investigation of the effects of continuum breakdown on hypersonic vehicle surface properties
,” Ph.D. thesis,
University of Michigan
, Ann Arbor,
2010
.
19.
E. D.
Farbar
, “
Kinetic simulation of rarefied and weakly ionized hypersonic flow fields
,” Ph.D. thesis,
University of Michigan
, Ann Arbor,
2010
.
20.
K.
Stephani
,
D.
Goldstein
, and
P.
Varghese
, “
Consistent treatment of transport properties for five-species air direct simulation Monte Carlo/Navier-Stokes applications
,”
Phys. Fluids
24
,
077101
(
2012
).
21.
A. B.
Weaver
and
A. A.
Alexeenko
, “
Revised variable soft sphere and Lennard-Jones model parameters for eight common gases up to 2200 K
,”
J. Phys. Chem. Ref. Data
44
,
023103
(
2015
).
22.
J.
Nelder
and
R.
Mead
, “
A simplex method for function minimization
,”
Comput. J.
7
,
308
-
313
(
1965
).
23.
J.
Lagarias
,
J.
Reeds
,
M.
Wright
, and
P.
Wright
, “
Convergence properties of the Nelder-Mead simplex method in low dimensions
,”
SIAM J. Optim.
9
(
1
),
112
-
147
(
1998
).
24.
E. A.
Mason
,
R. J.
Munn
, and
F. J.
Smith
, “
Transport coefficients of ionized gases
,”
Phys. Fluids (1958-1988)
10
,
1827
-
1832
(
1967
).
You do not currently have access to this content.