Gravity currents generated from an instantaneous buoyancy source of density contrast in the density ratio range of 0.3 ≤ γ ≤ 0.998 propagating downslope in the slope angle range of 0° ≤ θ < 90° have been investigated in the acceleration phase by means of high-resolution two-dimensional simulations of the incompressible variable-density Navier-Stokes equations. For all density contrasts considered in this study, front velocity history shows that, after the heavy fluid is released from rest, the gravity currents go through the acceleration phase, reaching a maximum front velocity Uf,max, followed by the deceleration phase. It is found that Uf,max increases as the density contrast increases and such a relationship is, for the first time, quantitatively described by the improved thermal theory considering the non-Boussinesq effects. Energy budgets show that, as the density contrast increases, the heavy fluid retains more fraction of potential energy loss while the ambient fluid receives less fraction of potential energy loss in the process of energy transfer during the propagation of downslope gravity currents. Previously, it was reported that for the Boussinesq case, the downslope gravity currents have a maximum of Uf,max at θ ≈ 40°. It is found, as is also confirmed by the energy budgets in this study, that the slope angle at which the downslope gravity currents have a maximum of Uf,max may increase beyond 40° as the density contrast increases.

1.
J.
Shin
,
S.
Dalziel
, and
P.
Linden
, “
Gravity currents produced by lock exchange
,”
J. Fluid Mech.
521
,
1
34
(
2004
).
2.
B.
Marino
,
L.
Thomas
, and
P.
Linden
, “
The front condition for gravity currents
,”
J. Fluid Mech.
536
,
49
78
(
2005
).
3.
M.
La Rocca
,
C.
Adduce
,
G.
Sciortino
, and
A. B.
Pinzon
, “
Experimental and numerical simulation of three-dimensional gravity currents on smooth and rough bottom
,”
Phys. Fluids
20
,
106603
(
2008
).
4.
M.
La Rocca
,
C.
Adduce
,
V.
Lombardi
,
G.
Sciortino
, and
R.
Hinkermann
, “
Development of a lattice Boltzmann method for two-layered shallow-water flow
,”
Int. J. Numer. Methods Fluids
70
,
1048
1072
(
2012
).
5.
M.
La Rocca
,
C.
Adduce
,
G.
Sciortino
,
P. A.
Bateman
, and
M. A.
Boniforti
, “
A two-layer shallow water model for 3D gravity currents
,”
J. Hydraul. Res.
50
,
208
217
(
2012
).
6.
C.
Adduce
,
G.
Sciortino
, and
S.
Proietti
, “
Gravity currents produced by lock-exchanges: Experiments and simulations with a two layer shallow-water model with entrainment
,”
J. Hydraul. Eng.
138
,
111
121
(
2012
).
7.
H. I. S.
Nogueira
,
C.
Adduce
,
E.
Alves
, and
M. J.
Franca
, “
Analysis of lock-exchange gravity currents over smooth and rough beds
,”
J. Hydraul. Res.
51
,
417
431
(
2013
).
8.
H. I. S.
Nogueira
,
C.
Adduce
,
E.
Alves
, and
M. J.
Franca
, “
Image analysis technique applied to lock-exchange gravity currents
,”
Meas. Sci. Technol.
24
,
047001
(
2013
).
9.
H. I. S.
Nogueira
,
C.
Adduce
,
E.
Alves
, and
M. J.
Franca
, “
Dynamics of the head of gravity currents
,”
Environ. Fluid Mech.
14
,
519
540
(
2014
).
10.
J. J.
Keller
and
Y. P.
Chyou
, “
On the hydraulic lock exchange problem
,”
J. Appl. Math. Phys.
42
,
874
909
(
1991
).
11.
H. P.
Gröbelbauer
,
T. K.
Fannelop
, and
R. E.
Britter
, “
The propagation of intrusion fronts of high density ratios
,”
J. Fluid Mech.
250
,
669
687
(
1993
).
12.
R. J.
Lowe
,
J. W.
Rottman
, and
P. F.
Linden
, “
The non-Boussinesq lock-exchange problem. Part 1. Theory and experiments
,”
J. Fluid Mech.
537
,
101
124
(
2005
).
13.
M. R.
Jacobson
and
F. Y.
Testik
, “
On the concentration structure of high-concentration constant-volume fluid mud gravity currents
,”
Phys. Fluids
25
,
016602
(
2013
).
14.
V. K.
Birman
,
J. E.
Martin
, and
E.
Meiburg
, “
The non-Boussinesq lock-exchange problem. Part 2. High-resolution simulations
,”
J. Fluid Mech.
537
,
125
144
(
2005
).
15.
J.
Étienne
,
E. J.
Hopfinger
, and
P.
Saramito
, “
Numerical simulations of high density ratio lock-exchange flows
,”
Phys. Fluids
17
,
036601
(
2005
).
16.
T.
Bonometti
,
S.
Balachandar
, and
J.
Magnaudet
, “
Wall effects in non-Boussinesq density currents
,”
J. Fluid Mech.
616
,
445
475
(
2008
).
17.
T.
Bonometti
,
M.
Ungarish
, and
S.
Balachandar
, “
A numerical investigation of high-Reynolds-number constant-volume non-Boussinesq density currents in deep ambient
,”
J. Fluid Mech.
673
,
574
602
(
2011
).
18.
V. K.
Birman
,
B. A.
Battandier
,
E.
Meiburg
, and
P. F.
Linden
, “
Lock-exchange flows in sloping channels
,”
J. Fluid Mech.
577
,
53
77
(
2007
).
19.
Y.
Hallez
and
J.
Magnaudet
, “
Effects of channel geometry on buoyancy-driven mixing
,”
Phys. Fluids
20
,
053306
(
2008
).
20.
A.
Dai
,
C. E.
Ozdemir
,
M. I.
Cantero
, and
S.
Balachandar
, “
Gravity currents from instantaneous sources down a slope
,”
J. Hydraul. Eng.
138
,
237
246
(
2012
).
21.
A.
Dai
, “
Gravity currents propagating on sloping boundaries
,”
J. Hydraul. Eng.
139
,
593
601
(
2013
).
22.
A.
Dai
, “
High-resolution simulations of downslope gravity currents in the acceleration phase
,”
Phys. Fluids
27
,
076602
(
2015
).
23.
P.
Beghin
,
E. J.
Hopfinger
, and
R. E.
Britter
, “
Gravitational convection from instantaneous sources on inclined boundaries
,”
J. Fluid Mech.
107
,
407
422
(
1981
).
24.
T.
Maxworthy
, “
Experiments on gravity currents propagating down slopes. Part 2. The evolution of a fixed volume of fluid released from closed locks into a long, open channel
,”
J. Fluid Mech.
647
,
27
51
(
2010
).
25.
A.
Dai
, “
Experiments on gravity currents propagating on different bottom slopes
,”
J. Fluid Mech.
731
,
117
141
(
2013
).
26.
C. S.
Jones
,
C.
Cenedese
,
E. P.
Chassignet
,
P. F.
Linden
, and
B. R.
Sutherland
, “
Gravity current propagation up a valley
,”
J. Fluid Mech.
762
,
417
434
(
2014
).
27.
L. J.
Marleau
,
M. R.
Flynn
, and
B. R.
Sutherland
, “
Gravity currents propagating up a slope
,”
Phys. Fluids
26
,
046605
(
2014
).
28.
V.
Lombardi
,
C.
Adduce
,
G.
Sciortino
, and
M.
La Rocca
, “
Gravity currents flowing upslope: Laboratory experiments and shallow-water simulations
,”
Phys. Fluids
27
,
016602
(
2015
).
29.
J.
Allen
,
Principles of Physical Sedimentology
(
Allen & Unwin
,
1985
).
30.
T. K.
Fannelop
,
Fluid Mechanics for Industrial Safety and Environmental Protection
(
Elsevier
,
1994
).
31.
J.
Simpson
,
Gravity Currents
, 2nd ed. (
Cambridge University Press
,
1997
).
32.
T.
Maxworthy
and
R. I.
Nokes
, “
Experiments on gravity currents propagating down slopes. Part 1. The release of a fixed volume of heavy fluid from an enclosed lock into an open channel
,”
J. Fluid Mech.
584
,
433
453
(
2007
).
33.
A. N.
Ross
,
P. F.
Linden
, and
S. B.
Dalziel
, “
A study of three-dimensional gravity currents on a uniform slope
,”
J. Fluid Mech.
453
,
239
261
(
2002
).
34.
R. E.
Britter
and
P. F.
Linden
, “
The motion of the front of a gravity current travelling down an incline
,”
J. Fluid Mech.
99
,
531
543
(
1980
).
35.
P. G.
Baines
, “
Mixing in flows down gentle slopes into stratified environments
,”
J. Fluid Mech.
443
,
237
270
(
2001
).
36.
P. G.
Baines
, “
Mixing regimes for the flow of dense fluid down slopes into stratified environments
,”
J. Fluid Mech.
538
,
245
267
(
2005
).
37.
A.
Dai
, “
Non-Boussinesq gravity currents propagating on different bottom slopes
,”
J. Fluid Mech.
741
,
658
680
(
2014
).
38.
W. B.
Dade
,
J. R.
Lister
, and
H. E.
Huppert
, “
Fine-sediment deposition from gravity surges on uniform slopes
,”
J. Sediment. Res. A
A64
,
423
432
(
1994
).
39.
M.
Rastello
and
E. J.
Hopfinger
, “
Sediment-entraining suspension clouds: A model of powder-snow avalanches
,”
J. Fluid Mech.
509
,
181
206
(
2004
).
40.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
1967
).
41.
T. H.
Ellison
and
J. S.
Turner
, “
Turbulent entrainment in stratified flows
,”
J. Fluid Mech.
6
,
423
448
(
1959
).
42.
A.
Dai
, “
Thermal theory for non-Boussinesq gravity currents propagating on inclined boundaries
,”
J. Hydraul. Eng.
141
,
06014021
(
2015
).
43.
C.
Härtel
,
E.
Meiburg
, and
F.
Necker
, “
Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries
,”
J. Fluid Mech.
418
,
189
212
(
2000
).
44.
F.
Necker
,
C.
Härtel
,
L.
Kleiser
, and
E.
Meiburg
, “
Mixing and dissipation in particle-driven gravity currents
,”
J. Fluid Mech.
545
,
339
372
(
2005
).
45.
M.
Cantero
,
J.
Lee
,
S.
Balachandar
, and
M.
Garcia
, “
On the front velocity of gravity currents
,”
J. Fluid Mech.
586
,
1
39
(
2007
).
46.
T.
Bonometti
and
S.
Balachandar
, “
Effect of Schmidt number on the structure and propagation of density currents
,”
Theor. Comput. Fluid Dyn.
22
,
341
361
(
2008
).
47.
J. H.
Williamson
, “
Low-storage Runge-Kutta schemes
,”
J. Comput. Phys.
35
,
48
56
(
1980
).
48.
D.
Durran
,
Numerical Methods for Wave Equations in Geophysical Fluid Dynamics
(
Springer
,
1999
).
49.
M.
Cantero
,
S.
Balachandar
, and
M.
Garcia
, “
High-resolution simulations of cylindrical density currents
,”
J. Fluid Mech.
590
,
437
469
(
2007
).
50.
C.
Härtel
,
L. K. M.
Michaud
, and
C.
Stein
, “
A direct numerical simulation approach to the study of intrusion fronts
,”
J. Eng. Math.
32
,
103
120
(
1997
).
51.
C.
Cenedese
and
C.
Adduce
, “
Mixing in a density driven current flowing down a slope in a rotating fluid
,”
J. Fluid Mech.
604
,
369
388
(
2008
).
52.
K. B.
Winters
,
P. N.
Lombard
,
J. J.
Riley
, and
E. A.
D’Asaro
, “
Available potential energy and mixing in density-stratified fluids
,”
J. Fluid Mech.
418
,
115
128
(
1995
).
53.
A.
Dai
, “
On the instability of a buoyancy-driven downflow
,”
Dyn. Atmos. Oceans
71
,
98
107
(
2015
).
You do not currently have access to this content.