The complicated dynamics of the contact line of a moving droplet on a solid substrate often hamper the efficient modeling of microfluidic systems. In particular, the selection of the effective boundary conditions, specifying the contact line motion, is a controversial issue since the microscopic physics that gives rise to this displacement is still unknown. Here, a sharp interface, continuum-level, novel modeling approach, accounting for liquid/solid micro-scale interactions assembled in a disjoining pressure term, is presented. By following a unified conception (the model applies both to the liquid/solid and the liquid/ambient interfaces), the friction forces at the contact line, as well as the dynamic contact angle are derived implicitly as a result of the disjoining pressure and viscous effects interplay in the vicinity of the substrate’s intrinsic roughness. Previous hydrodynamic model limitations, of imposing the contact line boundary condition to an unknown number and reconfigurable contact lines, when modeling the spreading dynamics on textured substrates, are now overcome. The validity of our approach is tested against experimental data of a droplet impacting on a horizontal solid surface. The study of the early spreading stage on hierarchically structured and chemically patterned solid substrates reveal an inertial regime where the contact radius grows according to a universal power law, perfectly agreeing with recently published experimental findings.

1.
G.
Karapetsas
,
R. V.
Craster
, and
O. K.
Matar
, “
Surfactant-driven dynamics of liquid lenses
,”
Phys. Fluids
23
,
122106
(
2011
).
2.
H.
You
and
A. J.
Steckl
, “
Versatile electrowetting arrays for smart window applications-from small to large pixels on fixed and flexible substrates
,”
Sol. Energy Mater. Sol. Cells
117
,
544
548
(
2013
).
3.
H.
Wijshoff
, “
The dynamics of the piezo inkjet printhead operation
,”
Phys. Rep.
491
,
77
177
(
2010
).
4.
T.
Krupenkin
and
J. A.
Taylor
, “
Reverse electrowetting as a new approach to high-power energy harvesting
,”
Nat. Commun.
2
,
448
(
2011
).
5.
C.
Neto
,
D. R.
Evans
,
E.
Bonaccurso
,
H.-J.
Butt
, and
V. S.
Craig
, “
Boundary slip in newtonian liquids: A review of experimental studies
,”
Rep. Prog. Phys.
68
,
2859
(
2005
).
6.
T. D.
Blake
, “
The physics of moving wetting lines
,”
J. Colloid Interface Sci.
299
,
1
13
(
2006
).
7.
E.
Lauga
,
M.
Brenner
, and
H.
Stone
, “
Microfluidics: The no-slip boundary condition
,” in
Springer Handbook of Experimental Fluid Mechanics
(
Springer, Berlin Heidelberg
,
2007
), pp.
1219
1240
.
8.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
, “
Wetting and spreading
,”
Rev. Mod. Phys.
81
,
739
(
2009
).
9.
W.
Ren
,
D.
Hu
, and
W.
E
, “
Continuum models for the contact line problem
,”
Phys. Fluids
22
,
102103
(
2010
).
10.
T.
Lee
,
E.
Charrault
, and
C.
Neto
, “
Interfacial slip on rough, patterned and soft surfaces: A review of experiments and simulations
,”
Adv. Colloid Interface Sci.
210
,
21
38
(
2014
).
11.
C.
Huh
and
L.
Scriven
, “
Hydrodynamic model of steady movement of a solid/liquid/fluid contact line
,”
J. Colloid Interface Sci.
35
,
85
101
(
1971
).
12.
T.
Blake
and
J.
Haynes
, “
Kinetics of liquid/liquid displacement
,”
J. Colloid Interface Sci.
30
,
421
423
(
1969
).
13.
R.
Fetzer
,
M.
Ramiasa
, and
J.
Ralston
, “
Dynamics of liquid-liquid displacement
,”
Langmuir
25
,
8069
8074
(
2009
).
14.
V.
Dussan
 et al, “
The moving contact line: The slip boundary condition
,”
J. Fluid Mech.
77
,
665
684
(
1976
).
15.
W.
Ren
and
W.
E
, “
Boundary conditions for the moving contact line problem
,”
Phys. Fluids
19
,
022101
(
2007
).
16.
R.
Cox
, “
The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow
,”
J. Fluid Mech.
168
,
169
194
(
1986
).
17.
R. L.
Hoffman
, “
A study of the advancing interface. I. Interface shape in liquidgas systems
,”
J. Colloid Interface Sci.
50
,
228
241
(
1975
).
18.
O.
Voinov
, “
Hydrodynamics of wetting
,”
Fluid Dyn.
11
,
714
721
(
1976
).
19.
L.
Tanner
, “
The spreading of silicone oil drops on horizontal surfaces
,”
J. Phys. D: Appl. Phys.
12
,
1473
(
1979
).
20.
P.-G.
De Gennes
, “
Wetting: Statics and dynamics
,”
Rev. Mod. Phys.
57
,
827
(
1985
).
21.
N.
Savva
and
S.
Kalliadasis
, “
Two-dimensional droplet spreading over topographical substrates
,”
Phys. Fluids
21
,
092102
(
2009
).
22.
A.
Peters
,
C.
Pirat
,
M.
Sbragaglia
,
B.
Borkent
,
M.
Wessling
,
D.
Lohse
, and
R. G.
Lammertink
, “
Cassie-baxter to wenzel state wetting transition: Scaling of the front velocity
,”
Eur. Phys. J. E: Soft Matter Biol. Phys.
29
,
391
397
(
2009
).
23.
J.
Koplik
and
J. R.
Banavar
, “
Continuum deductions from molecular hydrodynamics
,”
Annu. Rev. Fluid Mech.
27
,
257
292
(
1995
).
24.
F.-C.
Wang
and
Y.-P.
Zhao
, “
Contact angle hysteresis at the nanoscale: A molecular dynamics simulation study
,”
Colloid Polym. Sci.
291
,
307
315
(
2013
).
25.
A.
Briant
,
A.
Wagner
, and
J.
Yeomans
, “
Lattice Boltzmann simulations of contact line motion. I. Liquid-gas systems
,”
Phys. Rev. E
69
,
031602
(
2004
).
26.
M. E.
Kavousanakis
,
C. E.
Colosqui
,
I. G.
Kevrekidis
, and
A. G.
Papathanasiou
, “
Mechanisms of wetting transitions on patterned surfaces: Continuum and mesoscopic analysis
,”
Soft Matter
8
,
7928
7936
(
2012
).
27.
C. E.
Colosqui
,
M. E.
Kavousanakis
,
A. G.
Papathanasiou
, and
I. G.
Kevrekidis
, “
Mesoscopic model for microscale hydrodynamics and interfacial phenomena: Slip, films, and contact-angle hysteresis
,”
Phys. Rev. E
87
,
013302
(
2013
).
28.
P. A.
Thompson
and
M. O.
Robbins
, “
Simulations of contact-line motion: Slip and the dynamic contact angle
,”
Phys. Rev. Lett.
63
,
766
(
1989
).
29.
N. T.
Chamakos
,
M. E.
Kavousanakis
, and
A. G.
Papathanasiou
, “
Enabling efficient energy barrier computations of wetting transitions on geometrically patterned surfaces
,”
Soft Matter
9
,
9624
(
2013
).
30.
N. T.
Chamakos
,
M. E.
Kavousanakis
, and
A. G.
Papathanasiou
, “
Neither lippmann nor young: Enabling electrowetting modeling on structured dielectric surfaces
,”
Langmuir
30
,
4662
4670
(
2014
).
31.
M. E.
Kavousanakis
,
N. T.
Chamakos
, and
A. G.
Papathanasiou
, “
Connection of intrinsic wettability and surface topography with the apparent wetting behavior and adhesion properties
,”
J. Phys. Chem. C
119
,
15056
15066
(
2015
).
32.
A.
Adamson
,
Physical Chemistry of Surfaces
,
A Wiley-Interscience Publication
(
Wiley
,
1990
).
33.
B.
Deryaguin
,
N.
Churaev
, and
V.
Muller
,
Surface Forces. Consultants Bureau
(
Springer
,
New York
,
1987
).
34.
V. M.
Starov
, “
Surface forces action in a vicinity of three phase contact line and other current problems in kinetics of wetting and spreading
,”
Adv. Colloid Interface Sci.
161
,
139
152
(
2010
).
35.
S.
Richardson
, “
On the no-slip boundary condition
,”
J. Fluid Mech.
59
,
707
719
(
1973
).
36.
K. M.
Jansons
, “
Determination of the macroscopic (partial) slip boundary condition for a viscous flow over a randomly rough surface with a perfect slip microscopic boundary condition
,”
Phys. Fluids (1958-1988)
31
,
15
17
(
1988
).
37.
J.
Casado-Dıaz
,
E.
Fernández-Cara
, and
J.
Simon
, “
Why viscous fluids adhere to rugose walls: A mathematical explanation
,”
J. Differ. Equations
189
,
526
537
(
2003
).
38.
B.
Stapelbroek
,
H.
Jansen
,
E.
Kooij
,
J.
Snoeijer
, and
A.
Eddi
, “
Universal spreading of water drops on complex surfaces
,”
Soft Matter
10
,
2641
2648
(
2014
).
39.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics
(
Elsevier
,
2013
), Vol.
6
.
40.
R.
Scardovelli
and
S.
Zaleski
, “
Direct numerical simulation of free-surface and interfacial flow
,”
Annu. Rev. Fluid Mech.
31
,
567
603
(
1999
).
41.
E.
Ruckenstein
and
R. K.
Jain
, “
Spontaneous rupture of thin liquid films
,”
J. Chem. Soc., Faraday Trans. 2
70
,
132
147
(
1974
).
42.
M. B.
Williams
and
S. H.
Davis
, “
Nonlinear theory of film rupture
,”
J. Colloid Interface Sci.
90
,
220
228
(
1982
).
43.
J.
Eggers
, “
Contact line motion for partially wetting fluids
,”
Phys. Rev. E
72
,
061605
(
2005
).
44.
P.
Atkins
and
J.
de Paula
,
Atkins’ Physical Chemistry
(
Oxford University Press
,
2014
).
45.
B.
Dacorogna
and
P.
Marcellini
,
Implicit Partial Differential Equations
(
Springer
,
1999
), Vol.
37
.
46.
P. M.
Knupp
, “
Winslow smoothing on two-dimensional unstructured meshes
,”
Eng. Comput.
15
,
263
268
(
1999
).
47.
M.
Rauscher
and
S.
Dietrich
, “
Wetting phenomena in nanofluidics
,”
Annu. Rev. Mater. Res.
38
,
143
172
(
2008
).
48.
O. C.
Zienkiewicz
and
P.
Morice
,
The Finite Element Method in Engineering Science
(
McGraw-Hill
,
London
,
1971
), Vol.
1977
.
49.
Š.
Šikalo
,
C.
Tropea
, and
E.
Ganić
, “
Dynamic wetting angle of a spreading droplet
,”
Exp. Therm. Fluid Sci.
29
,
795
802
(
2005
).
50.
Š.
Šikalo
,
H.-D.
Wilhelm
,
I.
Roisman
,
S.
Jakirlić
, and
C.
Tropea
, “
Dynamic contact angle of spreading droplets: Experiments and simulations
,”
Phys. Fluids
17
,
062103
(
2005
).
51.
S. F.
Lunkad
,
V. V.
Buwa
, and
K.
Nigam
, “
Numerical simulations of drop impact and spreading on horizontal and inclined surfaces
,”
Chem. Eng. Sci.
62
,
7214
7224
(
2007
).
52.
S. F.
Kistler
, “
Hydrodynamics of wetting
,” in
Wettability
, edited by
J. C.
Berg
(
Marcel Dekker
,
New York
,
1993
), p.
311
.
53.
F. N.
Fritsch
and
R. E.
Carlson
, “
Monotone piecewise cubic interpolation
,”
SIAM J. Numer. Anal.
17
,
238
246
(
1980
).
54.
J.
Koplik
,
J. R.
Banavar
, and
J. F.
Willemsen
, “
Molecular dynamics of fluid flow at solid surfaces
,”
Phys. Fluids A
1
,
781
794
(
1989
).
55.
Z. U.
Warsi
,
Fluid Dynamics: Theoretical and Computational Approaches
(
CRC Press
,
2005
).
56.
A.
Yarin
, “
Drop impact dynamics: Splashing, spreading, receding, bouncing
,”
Annu. Rev. Fluid Mech.
38
,
159
192
(
2006
).
57.
A.-L.
Biance
,
C.
Clanet
, and
D.
Quéré
, “
First steps in the spreading of a liquid droplet
,”
Phys. Rev. E
69
,
016301
(
2004
).
58.
J.
Bird
,
S.
Mandre
, and
H.
Stone
, “
Short-time dynamics of partial wetting
,”
Phys. Rev. Lett.
100
,
234501
(
2008
).
59.
M.
Wu
,
T.
Cubaud
, and
C.-M.
Ho
, “
Scaling law in liquid drop coalescence driven by surface tension
,”
Phys. Fluids
16
,
L51
L54
(
2004
).
60.
A.
Carlson
,
G.
Bellani
, and
G.
Amberg
, “
Contact line dissipation in short-time dynamic wetting
,”
EPL
97
,
44004
(
2012
).
61.
J.
Wang
,
M.
Do-Quang
,
J. J.
Cannon
,
F.
Yue
,
Y.
Suzuki
,
G.
Amberg
, and
J.
Shiomi
, “
Surface structure determines dynamic wetting
,”
Sci. Rep.
5
,
8474
(
2015
).
62.
M.
Nosonovsky
and
B.
Bhushan
, “
Superhydrophobic surfaces and emerging applications: Non-adhesion, energy, green engineering
,”
Curr. Opin. Colloid Interface Sci.
14
,
270
280
(
2009
).
63.
L.
Feng
,
Y.
Zhang
,
J.
Xi
,
Y.
Zhu
,
N.
Wang
,
F.
Xia
, and
L.
Jiang
, “
Petal effect: A superhydrophobic state with high adhesive force
,”
Langmuir
24
,
4114
4119
(
2008
).
64.
W. C.
Sherbrooke
,
A. J.
Scardino
,
R.
de Nys
, and
L.
Schwarzkopf
, “
Functional morphology of scale hinges used to transport water: Convergent drinking adaptations in desert lizards (moloch horridus and phrynosoma cornutum)
,”
Zoomorphology
126
,
89
102
(
2007
).
65.
A.
Cavalli
,
P.
Bøggild
, and
F.
Okkels
, “
Parametric optimization of inverse trapezoid oleophobic surfaces
,”
Langmuir
28
,
17545
17551
(
2012
).
66.
G.
Pashos
,
G.
Kokkoris
, and
A.
Boudouvis
, “
A modified phase-field method for the investigation of wetting transitions of droplets on patterned surfaces
,”
J. Comput. Phys.
283
,
258
270
(
2015
).
67.
L.
Courbin
,
J. C.
Bird
,
M.
Reyssat
, and
H. A.
Stone
, “
Dynamics of wetting: From inertial spreading to viscous imbibition
,”
J. Phys.: Condens. Matter
21
,
464127
(
2009
).
68.
L.
Chen
,
C.
Li
,
N. F.
van der Vegt
,
G. K.
Auernhammer
, and
E.
Bonaccurso
, “
Initial electrospreading of aqueous electrolyte drops
,”
Phys. Rev. Lett.
110
,
026103
(
2013
).
69.
G.
Karapetsas
,
K. C.
Sahu
,
K.
Sefiane
, and
O. K.
Matar
, “
Thermocapillary-driven motion of a sessile drop: Effect of non-monotonic dependence of surface tension on temperature
,”
Langmuir
30
,
4310
4321
(
2014
).
70.
S.
Mandre
and
M. P.
Brenner
, “
The mechanism of a splash on a dry solid surface
,”
J. Fluid Mech.
690
,
148
172
(
2012
).
71.
J.
de Ruiter
,
F.
Mugele
, and
D.
van den Ende
, “
Air cushioning in droplet impact. I. Dynamics of thin films studied by dual wavelength reflection interference microscopy
,”
Phys. Fluids
27
,
012104
(
2015
).
72.
E.
Fares
and
W.
Schröder
, “
A differential equation for approximate wall distance
,”
Int. J. Numer. Methods Fluids
39
,
743
762
(
2002
).
You do not currently have access to this content.