The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.

1.
C.
Bargmann
,
W.
Newsome
,
A.
Anderson
,
E.
Brown
,
K.
Deisseroth
,
J.
Donoghue
,
P.
MacLeish
,
E.
Marder
,
R.
Normann
,
J.
Sanes
 et al, “
Brain 2025: A scientific vision
,”
Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Working Group Report to the Advisory Committee to the Director, NIH
, US National Institutes of Health, 2014, http://www.nih.gov/science/brain/2025/.
2.
H.
Baek
,
M.
Jayaraman
,
P.
Richardson
, and
G. E.
Karniadakis
, “
Flow instability and wall shear stress variation in intracranial aneurysms
,”
J. R. Soc., Interface
7
,
967
(
2009
).
3.
H.
Lei
and
G. E.
Karniadakis
, “
Probing vasoocclusion phenomena in sickle cell anemia via mesoscopic simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
11326
11330
(
2013
).
4.
D.
Fedosov
,
B.
Caswell
,
S.
Suresh
, and
G. E.
Karniadakis
, “
Quantifying the biophysical characteristics of plasmodium-falciparum-parasitized red blood cells in microcirculation
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
35
39
(
2011
).
5.
G. E.
Karniadakis
,
A.
Beskok
, and
N.
Aluru
,
Microflows and Nanoflows: Fundamentals and Simulation
(
Springer Science & Business Media
,
2006
), Vol.
29
.
6.
L.
Grinberg
,
T.
Anor
,
E.
Cheever
,
J. R.
Madsen
, and
G. E.
Karniadakis
, “
Simulation of the human intracranial arterial tree
,”
Philos. Trans. R. Soc., A
367
,
2371
2386
(
2009
).
7.
H.
Lippert
and
R.
Pabst
,
Arterial Variations in Man: Classification and Frequency
(
Springer
,
1985
).
8.
S.-W.
Lee
,
L.
Antiga
,
J. D.
Spence
, and
D. A.
Steinman
, “
Geometry of the carotid bifurcation predicts its exposure to disturbed flow
,”
Stroke
39
,
2341
2347
(
2008
).
9.
H.
Baek
,
M. V.
Jayaraman
, and
G. E.
Karniadakis
, “
Distribution of wss on the internal carotid artery with an aneurysm: A CFD sensitivity study
,” in
ASME 2007 International Mechanical Engineering Congress and Exposition
(
American Society of Mechanical Engineers
,
2007
), pp.
29
36
.
10.
D. A.
Steinman
,
Y.
Hoi
,
P.
Fahy
,
L.
Morris
,
M. T.
Walsh
,
N.
Aristokleous
,
A. S.
Anayiotos
,
Y.
Papaharilaou
,
A.
Arzani
,
S. C.
Shadden
 et al, “
Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: The ASME 2012 summer bioengineering conference CFD challenge
,”
J. Biomech. Eng.
135
,
021016
(
2013
).
11.
L.
Grinberg
,
D. A.
Fedosov
, and
G. E.
Karniadakis
, “
Parallel multiscale simulations of a brain aneurysm
,”
J. Comput. Phys.
244
,
131
147
(
2013
).
12.
L.
Formaggia
,
A.
Quarteroni
, and
A.
Veneziani
,
Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System
(
Springer Science & Business Media
,
2010
), Vol.
1
.
13.
Y.
Yu
,
H.
Baek
,
M. L.
Bittencourt
, and
G. E.
Karniadakis
, “
Mixed spectral/hp element formulation for nonlinear elasticity
,”
Comput. Methods Appl. Mech. Eng.
213
,
42
57
(
2012
).
14.
P.
Tricerri
,
L.
Dedè
,
S.
Deparis
,
A.
Quarteroni
,
A. M.
Robertson
, and
A.
Sequeira
, “
Fluid-structure interaction simulations of cerebral arteries modeled by isotropic and anisotropic constitutive laws
,”
Comput. Mech.
55
,
479
498
(
2015
).
15.
P.
Perdikaris
and
G. E.
Karniadakis
, “
Fractional-order viscoelasticity in one-dimensional blood flow models
,”
Ann. Biomed. Eng.
42
,
1012
1023
(
2014
).
16.
P.
Crosetto
,
S.
Deparis
,
G.
Fourestey
, and
A.
Quarteroni
, “
Parallel algorithms for fluid-structure interaction problems in haemodynamics
,”
SIAM J. Sci. Comput.
33
,
1598
1622
(
2011
).
17.
P.
Moireau
,
N.
Xiao
,
M.
Astorino
,
C. A.
Figueroa
,
D.
Chapelle
,
C. A.
Taylor
, and
J.-F.
Gerbeau
, “
External tissue support and fluid–structure simulation in blood flows
,”
Biomech. Model. Mechanobiol.
11
,
1
18
(
2012
).
18.
C. A.
Figueroa
,
I. E.
Vignon-Clementel
,
K. E.
Jansen
,
T. J.
Hughes
, and
C. A.
Taylor
, “
A coupled momentum method for modeling blood flow in three-dimensional deformable arteries
,”
Comput. Methods Appl. Mech. Eng.
195
,
5685
5706
(
2006
).
19.
H.
Baek
and
G. E.
Karniadakis
, “
A convergence study of a new partitioned fluid–structure interaction algorithm based on fictitious mass and damping
,”
J. Comput. Phys.
231
,
629
652
(
2012
).
20.
Y.
Yu
,
H.
Baek
, and
G. E.
Karniadakis
, “
Generalized fictitious methods for fluid–structure interactions: Analysis and simulations
,”
J. Comput. Phys.
245
,
317
346
(
2013
).
21.
Y.
Yu
,
M. L.
Bittencourt
, and
G. E.
Karniadakis
, “
A semi-local spectral/hp element solver for linear elasticity problems
,”
Int. J. Numer. Methods Eng.
100
,
347
373
(
2014
).
22.
G. E.
Karniadakis
and
S.
Sherwin
,
Spectral/hp Element Methods for Computational Fluid Dynamics
(
Oxford University Press
,
2013
).
23.
G. E.
Karniadakis
,
M.
Israeli
, and
S. A.
Orszag
, “
High-order splitting methods for the incompressible Navier-Stokes equations
,”
J. Comput. Phys.
97
,
414
443
(
1991
).
24.
L.
Grinberg
,
D.
Pekurovsky
,
S.
Sherwin
, and
G. E.
Karniadakis
, “
Parallel performance of the coarse space linear vertex solver and low energy basis preconditioner for spectral/hp elements
,”
Parallel Comput.
35
,
284
304
(
2009
).
25.
L.
Grinberg
and
G. E.
Karniadakis
, “
A new domain decomposition method with overlapping patches for ultrascale simulations: Application to biological flows
,”
J. Comput. Phys.
229
,
5541
5563
(
2010
).
26.
L.
Grinberg
,
V.
Morozov
,
D.
Fedosov
,
J.
Insley
,
M. E.
Papka
,
K.
Kumaran
,
G. E.
Karniadakis
 et al, “
A new computational paradigm in multiscale simulations: Application to brain blood flow
,” in
2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC)
(
IEEE
,
2011
), pp.
1
12
.
27.
S.
Sherwin
and
H. M.
Blackburn
, “
Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows
,”
J. Fluid Mech.
533
,
297
327
(
2005
).
28.
L.
Grinberg
,
A.
Yakhot
, and
G. E.
Karniadakis
, “
Analyzing transient turbulence in a stenosed carotid artery by proper orthogonal decomposition
,”
Ann. Biomed. Eng.
37
,
2200
2217
(
2009
).
29.
P.
Perdikaris
,
J.
Insley
,
L.
Grinberg
,
Y.
Yue
,
M. E.
Papka
, and
G. E.
Karniadakis
, “
Visualizing multiphysics, fluid-structure interaction phenomena in intracranial aneuryms
,”
Parallel Comput.
(published online).
30.
N.
Xiao
,
J. D.
Humphrey
, and
C. A.
Figueroa
, “
Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network
,”
J. Comput. Phys.
244
,
22
40
(
2013
).
31.
L.
Grinberg
,
T.
Anor
,
J.
Madsen
,
A.
Yakhot
, and
G. E.
Karniadakis
, “
Large-scale simulation of the human arterial tree
,”
Clin. Exp. Pharmacol. Physiol.
36
,
194
205
(
2009
).
32.
P.
Reymond
,
Y.
Bohraus
,
F.
Perren
,
F.
Lazeyras
, and
N.
Stergiopulos
, “
Validation of a patient-specific one-dimensional model of the systemic arterial tree
,”
Am. J. Physiol.: Heart Circ. Physiol.
301
,
H1173
H1182
(
2011
).
33.
N.
Xiao
,
J.
Alastruey
, and
C.
Alberto Figueroa
, “
A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models
,”
Int. J. Numer. Methods Biomed. Eng.
30
,
204
231
(
2014
).
34.
L.
Grinberg
,
E.
Cheever
,
T.
Anor
,
J. R.
Madsen
, and
G. E.
Karniadakis
, “
Modeling blood flow circulation in intracranial arterial networks: A comparative 3D/1D simulation study
,”
Ann. Biomed. Eng.
39
,
297
309
(
2011
).
35.
S.
Sherwin
,
V.
Franke
,
J.
Peiró
, and
K.
Parker
, “
One-dimensional modelling of a vascular network in space-time variables
,”
J. Eng. Math.
47
,
217
250
(
2003
).
36.
P.
Perdikaris
,
L.
Grinberg
, and
G. E.
Karniadakis
, “
An effective fractal-tree closure model for simulating blood flow in large arterial networks
,”
Ann. Biomed. Eng.
43
,
1432
1442
(
2014
).
37.
T.
Köppl
,
B.
Wohlmuth
, and
R.
Helmig
, “
Reduced one-dimensional modelling and numerical simulation for mass transport in fluids
,”
Int. J. Numer. Methods Fluids
72
,
135
156
(
2013
).
38.
M.
Zamir
, “
On fractal properties of arterial trees
,”
J. Theor. Biol.
197
,
517
526
(
1999
).
39.
F. N.
van de Vosse
and
N.
Stergiopulos
, “
Pulse wave propagation in the arterial tree
,”
Annu. Rev. Fluid Mech.
43
,
467
499
(
2011
).
40.
H.
Lei
,
B.
Caswell
, and
G. E.
Karniadakis
, “
Direct construction of mesoscopic models from microscopic simulations
,”
Phys. Rev. E
81
,
026704
(
2010
).
41.
P.
Espanol
and
P.
Warren
, “
Statistical mechanics of dissipative particle dynamics
,”
Europhys. Lett.
30
,
191
(
1995
).
42.
I. V.
Pivkin
,
B.
Caswell
, and
G. E.
Karniadakis
, “
Dissipative particle dynamics
,” in
Reviews in Computational Chemistry
(
John Wiley & Sons, Inc.
,
2010
), pp.
85
110
.
43.
D. A.
Fedosov
,
H.
Noguchi
, and
G.
Gompper
, “
Multiscale modeling of blood flow: From single cells to blood rheology
,”
Biomech. Model. Mechanobiol.
13
,
239
258
(
2014
).
44.
K.
Lykov
,
X.
Li
,
H.
Lei
,
I. V.
Pivkin
, and
G. E.
Karniadakis
, “
Inflow/outflow boundary conditions for particle-based blood flow simulations: Application to arterial bifurcations and trees
,”
PLoS Comput. Biol.
11
,
e1004410
(
2015
).
45.
H.
Lei
,
D. A.
Fedosov
, and
G. E.
Karniadakis
, “
Time-dependent and outflow boundary conditions for dissipative particle dynamics
,”
J. Comput. Phys.
230
,
3765
3779
(
2011
).
46.
Y.-H.
Tang
and
G. E.
Karniadakis
, “
Accelerating dissipative particle dynamics simulations on GPUs: Algorithms, numerics and applications
,”
Comput. Phys. Commun.
185
,
2809
2822
(
2014
).
47.
I. V.
Pivkin
,
P. D.
Richardson
, and
G. E.
Karniadakis
, “
Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
17164
17169
(
2006
).
48.
A.
Witthoft
,
A.
Yazdani
,
Z.
Peng
,
C.
Bellini
,
J.
Humphrey
, and
G. E.
Karniadakis
, “
A discrete particle model of a multilayered fiber-reinforced arterial wall
,”
J. R. Soc., Interface
(unpublished).
49.
D. A.
Fedosov
,
W.
Pan
,
B.
Caswell
,
G.
Gompper
, and
G. E.
Karniadakis
, “
Predicting human blood viscosity in silico
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
11772
11777
(
2011
).
50.
L.
Formaggia
,
J.-F.
Gerbeau
,
F.
Nobile
, and
A.
Quarteroni
, “
On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels
,”
Comput. Methods Appl. Mech. Eng.
191
,
561
582
(
2001
).
51.
P.
Blanco
,
R.
Feijóo
, and
S.
Urquiza
, “
A unified variational approach for coupling 3D–1D models and its blood flow applications
,”
Comput. Methods Appl. Mech. Eng.
196
,
4391
4410
(
2007
).
52.
A.
Moura
, “
The geometrical multiscale modelling of the cardiovascular system: Coupling 3D and 1D FSI models
,” Ph.D. thesis, Politecnico di Milano, 2007.
53.
T.
Passerini
,
M.
de Luca
,
L.
Formaggia
,
A.
Quarteroni
, and
A.
Veneziani
, “
A 3D/1D geometrical multiscale model of cerebral vasculature
,”
J. Eng. Math.
64
,
319
330
(
2009
).
54.
P. J.
Blanco
,
M.
Discacciati
, and
A.
Quarteroni
, “
Modeling dimensionally-heterogeneous problems: Analysis, approximation and applications
,”
Numer. Math.
119
,
299
335
(
2011
).
55.
A. C. I.
Malossi
,
P. J.
Blanco
,
P.
Crosetto
,
S.
Deparis
, and
A.
Quarteroni
, “
Implicit coupling of one-dimensional and three-dimensional blood flow models with compliant vessels
,”
Multiscale Model. Simul.
11
,
474
506
(
2013
).
56.
X.
Luo
,
M. R.
Maxey
, and
G. E.
Karniadakis
, “
Smoothed profile method for particulate flows: Error analysis and simulations
,”
J. Comput. Phys.
228
,
1750
1769
(
2009
).
57.
L.
Grinberg
,
M.
Deng
,
G. E.
Karniadakis
, and
A.
Yakhot
, “
Window proper orthogonal decomposition: Application to continuum and atomistic data
,” in
Reduced Order Methods for Modeling and Computational Reduction
(
Springer
,
2014
), pp.
275
303
.
58.
L.
Grinberg
, “
Proper orthogonal decomposition of atomistic flow simulations
,”
J. Comput. Phys.
231
,
5542
5556
(
2012
).
59.
See https://www.olcf.ornl.gov/summit/ for SUMMIT—Oak Ridge National Laboratory’s next High Performance Supercomputer.
60.
C.
Hadjistassou
,
A.
Bejan
, and
Y.
Ventikos
, “
Cerebral oxygenation and optimal vascular brain organization
,”
J. R. Soc., Interface
12
,
20150245
(
2015
).
61.
J.
Insley
,
L.
Grinberg
,
M. E.
Papka
 et al, “
Visualizing multiscale, multiphysics simulation data: Brain blood flow
,” in
2011 IEEE Symposium on Large Data Analysis and Visualization (LDAV)
(
IEEE
,
2011
), pp.
3
7
.
62.
Z.
Ghahramani
, “
Probabilistic machine learning and artificial intelligence
,”
Nature
521
,
452
459
(
2015
).
63.
P.
Perdikaris
,
D.
Venturi
,
J.
Royset
, and
G. E.
Karniadakis
, “
Multi-fidelity modelling via recursive co-kriging and Gaussian–Markov random fields
,” in
Proceedings of the Royal Society A
(
The Royal Society
,
2015
), Vol.
471
.
64.
P.
Baldi
and
S.
Brunak
,
Bioinformatics: The Machine Learning Approach
(
MIT Press
,
2001
).
65.
T. P.
Santisakultarm
,
N. R.
Cornelius
,
N.
Nishimura
,
A. I.
Schafer
,
R. T.
Silver
,
P. C.
Doerschuk
,
W. L.
Olbricht
, and
C. B.
Schaffer
, “
In vivo two-photon excited fluorescence microscopy reveals cardiac-and respiration-dependent pulsatile blood flow in cortical blood vessels in mice
,”
Am. J. Physiol.: Heart Circ. Physiol.
302
,
H1367
H1377
(
2012
).
66.
A. Y.
Shih
,
J. D.
Driscoll
,
P. J.
Drew
,
N.
Nishimura
,
C. B.
Schaffer
, and
D.
Kleinfeld
, “
Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain
,”
J. Cereb. Blood Flow Metab.
32
,
1277
1309
(
2012
).
67.
D. W.
Holman
,
V.
Kurtcuoglu
, and
D. M.
Grzybowski
, “
Cerebrospinal fluid dynamics in the human cranial subarachnoid space: An overlooked mediator of cerebral disease. II. In vitro arachnoid outflow model
,”
J. R. Soc., Interface
7
,
1205
(
2010
).
68.
S.
Gupta
,
M.
Soellinger
,
D. M.
Grzybowski
,
P.
Boesiger
,
J.
Biddiscombe
,
D.
Poulikakos
, and
V.
Kurtcuoglu
, “
Cerebrospinal fluid dynamics in the human cranial subarachnoid space: An overlooked mediator of cerebral disease. I. Computational model
,”
J. R. Soc., Interface
7
,
1195
1204
(
2010
).
69.
V.
Kurtcuoglu
,
M.
Soellinger
,
P.
Summers
,
K.
Boomsma
,
D.
Poulikakos
,
P.
Boesiger
, and
Y.
Ventikos
, “
Computational investigation of subject-specific cerebrospinal fluid flow in the third ventricle and aqueduct of sylvius
,”
J. Biomech.
40
,
1235
1245
(
2007
).
70.
B.
Tully
and
Y.
Ventikos
, “
Coupling poroelasticity and CFD for cerebrospinal fluid hydrodynamics
,”
IEEE Trans. Biomed. Eng.
56
,
1644
1651
(
2009
).
71.
M.
Asgari
,
D.
de Zélicourt
, and
V.
Kurtcuoglu
, “
How astrocyte networks may contribute to cerebral metabolite clearance
,”
Sci. Rep.
5
,
15024
(
2015
).
72.
A. E.
Witthoft
,
J. A.
Filosa
, and
G. E.
Karniadakis
, “
A computational model of astrocyte potassium buffering and bidirectional signaling in the neurovascular unit
,”
Biophys. J.
106
,
596a
(
2014
).
73.
A.
Witthoft
and
G. E.
Karniadakis
, “
A bidirectional model for communication in the neurovascular unit
,”
J. Theor. Biol.
311
,
80
93
(
2012
).
74.
A.
Witthoft
,
J. A.
Filosa
, and
G. E.
Karniadakis
, “
Potassium buffering in the neurovascular unit: Models and sensitivity analysis
,”
Biophys. J.
105
,
2046
2054
(
2013
).
75.
C. I.
Moore
and
R.
Cao
, “
The hemo-neural hypothesis: On the role of blood flow in information processing
,”
J. Neurophysiol.
99
,
2035
2047
(
2008
).
You do not currently have access to this content.