There are complex corner vortex flows in a rectangular hypersonic inlet/isolator. The corner vortex propagates downstream and interacts with the shocks and expansion waves in the isolator repeatedly. The supersonic corner vortex in a generic hypersonic inlet/isolator model is theoretically and numerically analyzed at a freestream Mach number of 4.92. The cross-flow topology of the corner vortex flow is found to obey Zhang’s theory [“Analytical analysis of subsonic and supersonic vortex formation,” Acta Aerodyn. Sin. 13, 259–264 (1995)] strictly, except for the short process with the vortex core situated in a subsonic flow which is surrounded by a supersonic flow. In general, the evolution history of the corner vortex under the influence of the background waves in the hypersonic inlet/isolator model can be classified into two types, namely, from the adverse pressure gradient region to the favorable pressure gradient region and the reversed one. For type 1, the corner vortex is a one-celled vortex with the cross-sectional streamlines spiraling inwards at first. Then the Hopf bifurcation occurs and the streamlines in the outer part of the limit cycle switch to spiraling outwards, yielding a two-celled vortex. The limit cycle shrinks gradually and finally vanishes with the streamlines of the entire corner vortex spiraling outwards. For type 2, the cross-sectional streamlines of the corner vortex spiral outwards first. Then a stable limit cycle is formed, yielding a two-celled vortex. The short-lived limit cycle forces the streamlines in the corner vortex to change the spiraling trends rapidly. Although it is found in this paper that there are some defects on the theoretical proof of the limit cycle, Zhang’s theory is proven useful for the prediction and qualitative analysis of the complex corner vortex in a hypersonic inlet/isolator. In addition, three conservation laws inside the limit cycle are obtained.

1.
M. K.
Smart
, “
Scramjets
,”
Aeronaut. J.
111
,
605
(
2007
).
2.
G.
Simeonides
,
W.
Haase
, and
M.
Manna
, “
Experimental, analytical, and computational methods applied to hypersonic compression ramp flows
,”
AIAA J.
32
,
301
(
1994
).
3.
L.
Krishnan
,
N. D.
Sandham
, and
J.
Steelant
, “
Shock-wave/boundary-layer interactions in a model scramjet intake
,”
AIAA J.
47
,
1680
(
2009
).
4.
D. V.
Gaitonde
, “
Progress in shock wave/boundary layer interactions
,”
Prog. Aerosp. Sci.
72
,
80
(
2015
).
5.
Y. P.
Goonko
,
A. F.
Latypov
,
I.
Mazhul
 et al., “
Structure of flow over a hypersonic inlet with side compression wedges
,”
AIAA J.
43
,
436
(
2003
).
6.
T.
Nguyen
,
M.
Behr
, and
B.
Reinartz
, “
Effects of sidewall compression and relaminarization in a scramjet inlet
,”
J. Propul. Power
29
,
628
(
2013
).
7.
D. S.
Dolling
and
W. B.
McClure
, “
Flowfield scaling in sharp fin-induced shock wave/turbulent boundary-layer interaction
,”
AIAA J.
23
,
201
(
1985
).
8.
F. S.
Alvi
and
G. S.
Settles
, “
Physical model of the swept shock wave/boundary-layer interaction flowfield
,”
AIAA J.
30
,
2252
(
1992
).
9.
H.
Kubota
and
J.
Stollery
, “
An experimental study of the interaction between a glancing shock wave and a turbulent boundary layer
,”
J. Fluid Mech.
116
,
431
(
1982
).
10.
R. H.
Korkegi
, “
A simple correlation for incipient-turbulent boundary-layer separation due to a skewed shock wave
,”
AIAA J.
11
,
1578
(
1973
).
11.
N. T.
Clemens
and
V.
Narayanaswamy
, “
Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions
,”
Annu. Rev. Fluid Mech.
46
,
469
(
2014
).
12.
D. C.
Reda
and
J. D.
Murphy
, “
Shock wave/turbulent boundary-layer interactions in rectangular channels
,”
AIAA J.
11
,
139
(
1973
).
13.
J. P.
Dussaug
and
S.
Piponniau
, “
Shock/boundary-layer interactions: Possible sources of unsteadiness
,”
J. Fluid Struct.
24
,
1166
(
2008
).
14.
P.
Dupont
,
C.
Haddad
,
J. P.
Ardissone
, and
J. F.
Debieve
, “
Space and time organization of a shock wave/turbulent boundary layer interaction
,”
Aerosp. Sci. Technol.
9
,
561
(
2005
).
15.
P.
Bookey
,
C.
Wyckham
, and
A.
Smits
, “Experimental investigations of Mach 3 shock wave turbulent boundary layer interactions”, AIAA Paper No. 2005-4899, 2005.
16.
P. J. K.
Bruce
,
D. M. F.
Burton
,
N. A.
Titchener
, and
H.
Babinsky
, “
Corner effect and separation in transonic channel flows
,”
J. Fluid Mech.
679
,
247
(
2011
).
17.
D. M. F.
Burton
and
H.
Babinsky
, “
Corner separation effects for normal shock wave/turbulent boundary layer interactions in rectangular channels
,”
J. Fluid Mech.
707
,
287
(
2012
).
18.
B.
Wang
,
N. D.
Sandham
 et al., “
Numerical study of oblique shock-wave/boundary layer interaction considering sidewall effects
,”
J. Fluid Mech.
767
,
526
(
2015
).
19.
H.
Babinsky
,
J.
Oorebeek
, and
T. G.
Cottingham
, “Corner effects in reflecting oblique shock-wave/boundary layer interactions,” AIAA Paper No. 2013-0859, 2013.
20.
J. A.
Benek
,
C. J.
Suchyta
, and
H.
Babinsky
, “The effect of wind tunnel size and shock strength on incident shock boundary layer interaction experiments,” AIAA Paper No. 2014-3336, 2014.
21.
W. E.
Eagle
and
J. F.
Driscoll
, “
Shock wave/boundary layer interactions in rectangular inlets: Three-dimensional separation topology and critical points
,”
J. Fluid Mech.
756
,
328
(
2014
).
22.
D. R.
Reddy
and
L. J.
Weir
, “
Three-dimensional viscous analysis of a Mach 5 inlet and comparison with experimental data
,”
J. Propul. Power
8
,
432
(
1992
).
23.
J.
Häberle
and
A.
Gülhan
, “
Investigation of two-dimensional scramjet inlet flowfield at Mach 7
,”
J. Propul. Power
24
,
446
(
2008
).
24.
F.
Marconi
, “Internal corner flow fields,” AIAA Paper No. 79-0014, 1979.
25.
H. X.
Huang
,
S.
Sun
,
H. J.
Tan
,
L.
Ning
 et al., “
Characterization of two typical unthrottled flows in hypersonic inlet/isolator models
,”
J. Aircr.
52
,
1715
(
2015
).
26.
H. J.
Tan
,
S.
Sun
, and
H. X.
Huang
, “
Behavior of shock trains in a hypersonic inlet/isolator model with complex background waves
,”
Exp. Fluids.
53
,
1647
(
2012
).
27.
A. E.
Perry
and
B. D.
Fairlie
, “
Critical points in flow patterns
,”
Adv. Geophys.
18
,
299
(
1974
).
28.
H. X.
Zhang
, “
Analytical analysis of subsonic and supersonic vortex formation
,”
Acta Aerodyn. Sin.
13
,
259
(
1995
), (in Chinese).
29.
B. U.
Reinartz
,
C. D.
Herrmann
, and
J.
Ballmann
, “
Aerodynamic performance analysis of a hypersonic inlet isolator using computation and experiment
,”
J. Propul. Power
19
,
868
(
2003
).
30.
A. C.
Idris
,
M. R.
Saad
,
B. H.
Zare
, and
K.
Kontis
, “
Luminescent measurement systems for the investigation of a scramjet inlet-isolator
,”
Sensors
14
,
6606
(
2014
).
31.
N.
Raj
and
K.
Venkatasubbaiah
, “
A new approach for the design of hypersonic scramjet inlets
,”
Phys. Fluids
24
,
86103
(
2012
).
32.
F. R.
Menter
, “
Two-equation Eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
(
1994
).
33.
D. C.
Wilcox
,
Turbulence Modeling for CFD
(
DCW Industries, Inc
,
California
,
2006
), p.
258
.
34.
T. J.
Barth
and
D.
Jespersen
, “The design and application of upwind schemes on unstructured meshes,” AIAA Paper No. 89-0366, 1989.
35.
P. R.
Spalart
,
M. L.
Shur
,
M. Kh.
Strelets
, and
A. K.
Travin
, “
Direct simulation and RANS modelling of a vortex generator flow
,”
Flow, Turbul. Combust.
95
,
335
(
2015
).
36.
P. R.
Spalart
and
M. L.
Shur
, “
On the sensitization of turbulence models to rotation and curvature
,”
Aerosp. Sci. Technol.
1
,
297
(
1997
).
37.
E. C.
Maskell
, “
Flow separation in three dimensions
,”
RAE Rep. Aero.
2565
(
1955
).
38.
M. J.
Lighthill
, “
Attachment and separation in three-dimensional flow
,” in
Laminar Boundary Layers
(
Oxford University Press
,
London
,
1963
), pp.
72
82
.
39.
M.
Tobak
and
D. J.
Peake
, “
Topology of three dimensional separated flows
,”
Annu. Rev. Fluid Mech.
14
,
61
(
1982
).
40.
J.
Délery
,
Three-Dimensional Separated Flow Topology
(
ISTE Ltd and John Wiley & Sons
,
London
,
2013
), p.
23
.
41.
A. E.
Perry
and
T. R.
Steiner
, “
Large-scale vortex structures in turbulent wakes behind bluff bodies. I. Vortex formation processes
,”
J. Fluid Mech.
174
,
233
(
1987
).
42.
T. R.
Steiner
and
A. E.
Perry
, “
Large-scale vortex structures in turbulent wakes behind bluff bodies. II. Far-wake structures
,”
J. Fluid Mech.
174
,
271
(
1987
).
43.
A. E.
Perry
and
M. S.
Chong
, “
A description of eddying motions and flow patterns using critical point concepts
,”
Annu. Rev. Fluid Mech.
19
,
125
(
1987
).
44.
D. W.
Jordan
and
P.
Smith
,
Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers
, 4th ed. (
Oxford University Press
,
New York
,
2007
).
45.
J. C. R.
Hunt
,
A. A.
Wray
, and
P.
Moin
, “
Eddies, stream, and convergence zones in turbulent flows
,”
Center for Turbulence Research Report CTR-S 88
,
1988
, p.
193
.
46.
I. M.
Kalkhoran
,
M. K.
Smart
, and
F. Y.
Wang
, “
Supersonic vortex breakdown during vortex/cylinder interaction
,”
J. Fluid Mech.
369
,
351
(
1998
).
47.
I. M.
Kalkhoran
and
M. K.
Smart
, “
Aspects of shock wave-induced vortex breakdown
,”
Prog. Aerosp. Sci.
36
,
63
(
2000
).
48.
M. K.
Smart
and
I. M.
Kalkhoran
, “
The effect of shock strength on oblique shock wave-vortex interaction
,”
AIAA J.
33
,
2137
(
1995
).
49.
K. M.
Cipolla
and
D.
Rockwell
, “
Flow structure on stalled delta wing subjected to small amplitude pitching oscillations
,”
AIAA J.
33
,
1256
(
1995
).
50.
S. T.
Wereley
and
R. M.
Lueptow
, “
Inertial particle motion in a Taylor Couette rotating filter
,”
Phys. Fluids
11
,
325
(
1999
).
You do not currently have access to this content.