This analysis follows and integrates the line of inquiry started in past author’s works [M. Lappa, “Three-dimensional numerical simulation of Marangoni flow instabilities in floating zones laterally heated by an equatorial ring,” Phys. Fluids 15(3), 776–789 (2003) and “Combined effect of volume and gravity on the three-dimensional flow instability in non-cylindrical floating zones heated by an equatorial ring,” ibid.16(2), 331–343 (2004)] about the typical instabilities of the Marangoni flow and associated hierarchy of bifurcations in laterally heated floating zones with various shapes and aspect ratios. The main motivation for re-examining this kind of problems, which have attracted so much attention over the last twenty years, is the recent discovery [M. Kudo et al., “Transition of thermocapillary convection in a full-zone liquid bridge,” Trans. JSME (in Japanese) 80(812), TEP0095 (2014)] of a chaotic state in the region of the space of parameters where on the basis of existing theories and earlier results for the classical liquid-bridge problem with organic fluids, the flow should be relatively regular in time and with a simple structure in space. Axisymmetric computations are used to obtain the steady basic state, and then the Navier Stokes equations are solved in their complete, three-dimensional, time-dependent, and non-linear formulation to investigate the evolution of azimuthal disturbances. It is shown that the “apparent” doubling or quadrupling of the azimuthal wavenumber in the equatorial plane, previously reported for the case of floating zones of liquid metals, is replaced for high-Prandtl-number liquids by the complex interaction of disturbances with distinct spatial and temporal scales. These disturbances become critical at relatively comparable values of the Marangoni number. The unexpected multiplicity of waveforms and competition of spatial modes are explained according to the increased complexity of the considered system in terms of flow topology and structure with respect to the classical half-zone configuration.

1.
S.
Frank
and
D.
Schwabe
, “
Temporal and spatial elements of thermocapillary convection in floating zones
,”
Exp. Fluids
23
,
234
251
(
1997
).
2.
V. M.
Shevtsova
,
D. E.
Melnikov
, and
J. C.
Legros
, “
Three-dimensional simulations of hydrodynamical instability in liquid bridges: Influence of temperature-dependent viscosity
,”
Phys. Fluids
13
,
2851
2865
(
2001
).
3.
V. M.
Shevtsova
,
D. E.
Melnikov
, and
J. C.
Legros
, “
Multistability of oscillatory thermocapillary convection in a liquid bridge
,”
Phys. Rev. E
68
(
6
),
066311
(
2003
).
4.
V.
Shevtsova
,
D. E.
Melnikov
, and
A.
Nepomnyashchy
, “
New flow regimes generated by mode coupling in buoyant-thermocapillary convection
,”
Phys. Rev. Lett.
102
,
134503
(
2009
).
5.
V.
Shevtsova
,
A.
Mialdun
,
H.
Kawamura
,
I.
Ueno
,
K.
Nishino
, and
M.
Lappa
, “
Onset of hydrothermal instability in liquid bridge. Experimental benchmark
,”
Fluid Dyn. Mater. Process
7
(
1
),
1
28
(
2011
).
6.
D. E.
Melnikov
,
V. M.
Shevtsova
, and
J. C.
Legros
, “
Route to aperiodicity followed by high Prandtl-number liquid bridge. 1-g case
,”
Acta Astronaut.
56
(
6
),
601
611
(
2005
).
7.
K. W.
Benz
, “
Factors controlling crystal perfections during growth under microgravity
,” in
Proceedings VIIth European Symposium on Materials and Fluid Sciences in Microgravity Oxford (United Kingdom), 10–15 September 1990
(
ESA
,
SP
,
1990
), Vol.
295
, pp.
59
61
.
8.
A.
Cröll
,
Th.
Kaiser
,
M.
Schweizer
,
A. N.
Danilewsky
,
S.
Lauer
,
A.
Tegetmeier
, and
K. W.
Benz
, “
Floating-zone and floating-solution-zone growth of GaSb under microgravity
,”
J. Cryst. Growth
191
,
365
376
(
1998
).
9.
M.
Saurat
and
A.
Revcolevschi
, “
Preparation by the floating zone method of refractory oxide monocrystals, in particular gallium oxide, and study of some of their properties
,”
Rev. Int. Hautes Temp. Refract.
8
,
291
304
(
1971
).
10.
I.
Shindo
,
N.
Ii
,
K.
Kitamura
, and
S.
Kimura
, “
Single crystal growth of substituted yttrium iron garnets Y3Fe5 − x(Ga,Al)x O12 by the floating zone method
,”
J. Cryst. Growth
46
,
307
313
(
1979
).
11.
I.
Shindo
, “
Determination of the phase diagram by the slow cooling float zone method: The system MgO-TiO2
,”
J. Cryst. Growth
50
,
839
851
(
1980
).
12.
A. M.
Balbashov
and
S. K.
Egorov
, “
Apparatus for growth of single crystals of oxide compounds by floating zone melting with radiation heating
,”
J. Cryst. Growth
52
,
498
504
(
1981
).
13.
S.
Kimura
and
K.
Kitamura
, “
Floating zone crystal growth and phase equilibria: A review
,”
J. Am. Ceram. Soc.
75
(
6
),
1140
1146
(
1992
).
14.
A.
Revcolevschi
and
J.
Jegoudez
, “
Growth of large high-Tc single crystals by the floating zone method: A review
,”
Prog. Mater. Sci.
42
,
321
339
(
1997
).
15.
B.
Moest
,
V. G.
Glebovsky
,
H. H.
Brongersma
,
R. H.
Bergmans
,
A. W.
Denier van der Gon
, and
V. N.
Semenov
, “
Study of Pd single crystals grown by crucibleless zone melting
,”
J. Cryst. Growth
192
(
3-4
),
410
416
(
1998
).
16.
E. G.
Villora
,
K.
Shimamura
,
Y.
Yoshikawa
,
K.
Aoki
, and
N.
Ichinose
, “
Large-size β-Ga2O3 single crystals and wafers
,”
J. Cryst. Growth
270
,
420
426
(
2004
).
17.
A. M.
Balbashov
,
A. A.
Tsvetkova
, and
A. Y.
Chervonenkis
, “
Imperfections in crystals of yttrium-iron garnet grown from nonstoichiometric melts
,”
Neorg. Mater.
11
,
108
111
(
1975
).
18.
M.
Higuchi
and
K.
Kodaira
, “
Effect of ZrO2 addition on FZ growth of rutile single crystals
,”
J. Cryst. Growth
123
,
495
499
(
1992
).
19.
H. A.
Dabkowska
and
A. B.
Dabkowski
, “
Crystal growth of oxides by optical floating zone technique
,” in
Springer Handbook of Crystal Growth
(
Springer
,
2010
), pp.
367
391
.
20.
H. A.
Dabkowska
and
B. D.
Gaulin
, in
Crystal Growth of Technologically Important Electronic Materials
, edited by
K.
Byrappa
,
T.
Ochachi
,
M.
Klapper
, and
R.
Fornari
(
Allied Publishers PVT
,
New Delhi
,
2003
), pp.
341
354
.
21.
J.
Baumgartl
,
M.
Gewald
,
R.
Rupp
,
J.
Stierlen
, and
G.
Muller
, “
The use of magnetic fields and microgravity in melt growth of semiconductors: A comparative study
,” in
Proceedings VIIth European Symposium on Materials and Fluid Sciences in Microgravity Oxford (United Kingdom), 10–15 September 1990
(
ESA
,
SP
,
1990
), p.
295
.
22.
M.
Lappa
, “
Three-dimensional numerical simulation of Marangoni flow instabilities in floating zones laterally heated by an equatorial ring
,”
Phys. Fluids
15
(
3
),
776
789
(
2003
).
23.
M.
Lappa
, “
Combined effect of volume and gravity on the three-dimensional flow instability in non-cylindrical floating zones heated by an equatorial ring
,”
Phys. Fluids
16
(
2
),
331
343
(
2004
).
24.
M.
Lappa
, “
Floating zones heated around the equatorial plane: Models and simulations
,”
Microgravity Sci. Tech.
15
(
3
),
36
51
(
2004
).
25.
M.
Lappa
, “
Analysis of flow instabilities in convex and concave floating zones heated by an equatorial ring under microgravity conditions
,”
Comput. Fluids
34
(
6
),
743
770
(
2005
).
26.
H.
Minakuchi
,
Y.
Okano
, and
S.
Dost
, “
A three-dimensional numerical simulation study of the Marangoni convection occurring in the crystal growth of Six Ge1−x by the floating zone technique in zero gravity
,”
J. Cryst. Growth
266
,
140
144
(
2004
).
27.
B. C.
Houchens
and
J. S.
Walker
, “
Modeling the floating zone: Instabilities in the half zone and full zone
,”
J. Thermophys. Heat Transfer
19
(
2
),
186
198
(
2005
).
28.
A. Yu.
Gelfgat
,
A.
Rubinov
,
P. Z.
Bar-Yoseph
, and
A.
Solan
, “
On the three-dimensional instability of thermocapillary convection in arbitrarily heated floating zones in microgravity environment
,”
Fluid Dyn. Mater. Process
1
(
1
),
21
32
(
2005
).
29.
K.
Lin
,
P.
Dold
, and
K. W.
Benz
, “
Numerical simulation of general flow features in a germanium floating zone
,”
Comput. Mater. Sci.
39
(
2
),
424
429
(
2007
).
30.
C. J.
Chen
and
H.
Chieh
, “
Measurement of the float-zone interface shape for lithium niobate
,”
J. Cryst. Growth
149
,
87
95
(
1995
).
31.
C. W.
Lan
, “
Three-dimensional simulation of floating-zone crystal growth of oxide crystals
,”
J. Cryst. Growth
247
,
597
612
(
2003
).
32.
O.
Bouizi
,
C.
Delcarte
, and
G.
Kasperski
, “
Stability study of the floating zone with respect to the Prandtl number value
,”
Phys. Fluids
19
,
114102
(
2007
).
33.
M.
Kudo
,
I.
Ueno
, and
H.
Kawamura
, “
Transition of thermocapillary convection in a full-zone liquid bridge
,”
Trans. JSME
80
(
812
),
TEP0095
(
2014
), (in Japanese).
34.
M.
Sakurai
,
A.
Tamura
,
A.
Kinoshita
, and
A.
Hirata
, “
Marangoni convection in a liquid bridge that is heated by a ring heater in a full zone model
,”
J. Jpn. Soc. Microgravity Appl.
15
,
419
424
(
1998
).
35.
M.
Lappa
,
R.
Savino
, and
R.
Monti
, “
Three-dimensional numerical simulation of Marangoni instabilities in liquid bridges: Influence of geometrical aspect ratio
,”
Int. J. Numer. Methods Fluids
36
(
1
),
53
90
(
2001
).
36.
S.
Otani
,
T.
Tanaka
, and
Y.
Ishizawa
, “
Control of heat flow to feed rod in floating zone system
,”
J. Cryst. Growth
87
,
175
179
(
1988
).
37.
D.
Rivas
and
C.
Vazquez–Espi
, “
An analysis of lamp irradiation in ellipsoidal mirror furnaces
,”
J. Cryst. Growth
223
,
433
445
(
2001
).
38.
F. H.
Harlow
and
J. E.
Welch
, “
Numerical calculation of time-dependent viscous incompressible flow with free surface
,”
Phys. Fluids
8
,
2182
2189
(
1965
).
39.
A. J.
Chorin
, “
Numerical solutions of the Navier-Stokes equations
,”
Math. Comput.
22
,
745
762
(
1968
).
40.
R.
Temam
, “
Une méthode d’approximation de la solution des équations de Navier-Stokes
,”
Bull. Soc. Math. France
98
,
115
152
(
1968
).
41.
O. A.
Ladyzhenskaya
,
The Mathematical Theory of Viscous Incompressible Flow
, 2nd ed. (
Gordon and Breach
,
New York, London
,
1969
).
42.
M.
Lappa
and
R.
Savino
, “
Parallel solution of the three-dimensional Marangoni flow instabilities in liquid bridges
,”
Int. J. Numer. Methods Fluids
31
(
6
),
911
925
(
1999
).
43.
D.
Melnikov
,
D.
Pushkin
, and
V.
Shevtsova
, “
Accumulation of particles in time-dependent thermocapillary flow in a liquid bridge. Modeling of experiments
,”
Eur. Phys. J. Special Topics
192
,
29
39
(
2011
).
44.
M.
Lappa
, “
On the variety of particle accumulation structures under the effect of g-jitters
,”
J. Fluid Mech.
726
,
160
195
(
2013
).
45.
M.
Assenheimer
and
V.
Steinberg
, “
Observation of coexisting upflow and downflow hexagons in Boussinesq Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
76
,
756
759
(
1996
).
46.
R. V.
Cakmur
,
D. A.
Egolf
,
B. B.
Plapp
, and
E.
Bodenschatz
, “
Bistability and competition of spatiotemporal chaotic and fixed point attractors in Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
79
(
10
),
1853
1856
(
1997
).
47.
D.
Johnson
and
R.
Narayanan
, “
Experimental observation of dynamic mode switching in interfacial-tension-driven convection near a codimension-two point
,”
Phys. Rev. E
54
,
R3102(R)
(
1996
).
48.
P. C.
Dauby
,
G.
Lebon
, and
E.
Bouhy
, “
Linear Bénard-Marangoni instability in rigid circular containers
,”
Phys. Rev. E
56
,
520
(
1997
).
49.
A. Yu.
Gelfgat
,
P. Z.
Bar-Yoseph
, and
A.
Solan
, “
Axisymmetry breaking instabilities of natural convection in a vertical Bridgman growth configuration
,”
J. Cryst. Growth
220
,
316
325
(
2000
).
50.
H. C.
Kuhlmann
and
H. J.
Rath
, “
On the interpretation of phase measurements of oscillatory thermocapillary convection in liquid bridges
,”
Phys. Fluids A
5
(
9
),
2117
2120
(
1993
).
You do not currently have access to this content.