Ice disks were released at the surface of a thermalised aluminium plate. The fusion of the ice creates a lubrication film between the ice disk and the plate. The situation is similar to the Leidenfrost effect reported for a liquid droplet evaporating at the surface of a plate which temperature is above the boiling temperature of the liquid. An analogy is depicted between the Leidenfrost phenomenon and the rapid fusion of a solid at the contact of a hot plate. Similarly to Leidenfrost droplet, we observe that, while the ice disks were melting, the disks were very mobile: translation and rotation. A hole was drilled in the plate and allowed the canalising of the melted liquid. Under these conditions, we discover that the rotation of the ice disk is systematic and persistent. Moreover, the rotation speed increases with the temperature of the plate and with the load put on the ice disk. A model is proposed to explain the spontaneous rotation of the ice disk. We claim that the rotation is due to the viscous drag of the liquid that flows around the ice disk.

1.
D.
Quéré
, “
Leidenfrost dynamics
,”
Ann. Rev. Fluids Mech.
45
,
197
(
2013
).
2.
F.
Celestini
,
T.
Frisch
, and
Y.
Pomeau
, “
Room temperature water Leidenfrost droplets
,”
Soft Matter
9
,
9535
(
2013
).
3.
A.
Snezhko
,
E.
Jacob
, and
I.
Aranson
, “
Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets
,”
New J. Phys.
10
,
043034
(
2008
).
4.
L.
Maquet
,
B.
Sobac
,
B.
Darbois-Texier
,
A.
Duchesne
,
M.
Brandenbourger
,
A.
Rednikov
,
P.
Colinet
, and
S.
Dorbolo
,
Phys. Rev. Fluids
1
,
053902
(
2016
).
5.
G.
Lagubeau
,
M.
Le Merrer
,
C.
Clanet
, and
D.
Quéré
, “
Leidenfrost on a ratchet
,”
Nat. Phys.
7
,
395
(
2011
).
6.
R. S.
Hall
,
S. J.
Board
,
A. J.
Clare
,
R. B.
Duffey
,
T. S.
Playle
, and
D. H.
Poole
, “
Inverse Leidenfrost phenomenon
,”
Nature
224
,
266
(
1969
).
7.
I. U.
Vakarelski
,
N. A.
Patanka
,
J. O.
Marston
,
D. Y. C.
Chan
, and
S. T.
Thoroddsen
, “
Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces
,”
Nature
489
,
274
(
2012
).
8.
R.
Narhe
,
S.
Anand
,
K.
Rykaczewski
,
M.-G.
Medici
,
W.
Gonzalez-Vinas
,
K. K.
Varanasi
, and
D.
Beysens
, “
Inverted Leidenfrost-like effect during condensation
,”
Langmuir
31
,
5353
(
2015
).
9.
M.
Adda-Bedia
,
S.
Kumar
,
F.
Lechenault
,
S.
Moulinet
,
M.
Schillaci
, and
D.
Vella
, “
Inverse Leidenfrost effect: Levitating drops on liquid Nitrogen
,”
Langmuir
32
,
4179
(
2016
).
10.
D.
Soto
,
G.
Lagubeau
,
C.
Clanet
, and
D.
Quéré
, “
Surfing on a herringbone
,”
Phys. Rev. Fluids
1
,
013902
(
2016
).
11.
C.
Raufaste
,
Y.
Bouret
, and
F.
Celestini
, “
Reactive Leidenfrost droplets
,”
Europhys. Lett.
114
,
46005
(
2016
).
12.
C.
Cheng
,
M.
Guy
, and
K.
Takashina
, Water JPI, University of Bath, UK, https://youtu.be/w0lMJcAfzU4.
13.
J.
Chapman Caddell
, Leidenpump, US patent 20150235719 A1 (20 August 2015).
14.
G. G.
Wells
,
R.
Ledesma-Aguilar
,
G.
McHale
, and
K.
Sefiane
, “
A sublimation heat engine
,”
Nat. Commun.
6
,
6390
(
2015
).
15.
A.
Hashmi
,
Y.
Xu
,
B.
Coder
,
P. A.
Osborne
,
J.
Spafford
,
G. E.
Michael
,
G.
Yu
, and
J.
Xu
, “
Leidenfrost levitation: Beyond droplets
,”
Sci. Rep.
2
,
797
(
2012
).
16.
A.-L.
Biance
,
C.
Clanet
, and
D.
Quéré
, “
Leidenfrost drops
,”
Phys. Fluids
15
,
1632
(
2003
).
17.
S.
Gogte
,
P.
Vorobieff
,
R.
Truesdell
,
A.
Mammoli
,
F.
van Swol
,
P.
Shah
, and
C. J.
Brinker
, “
Effective slip on textured superhydrophobic surfaces
,”
Phys. Fluids
17
,
051701
(
2005
).
18.
N. T.
Chamakos
,
M. E.
Kavousanakis
,
A. G.
Boudouvis
, and
A. G.
Papathanasiou
, “
Droplet spreading on rough surfaces: Tackling the contact line boundary condition
,”
Phys. Fluids
28
,
022105
(
2016
).
19.
S.
Dorbolo
,
N.
Adami
,
C.
Dubois
,
H.
Caps
,
N.
Vandewalle
, and
B.
Darbois-Texier
, “
Rotation of melting ice disks due to melt fluid flow
,”
Phys. Rev. E
93
,
033112
(
2016
).

Supplementary Material

You do not currently have access to this content.