The sedimentation of a pair of rigid circular particles in a two-dimensional vertical channel containing a Newtonian fluid is investigated numerically, for terminal particle Reynolds numbers (ReT) ranging from 1 to 10, and for a confinement ratio equal to 4. While it is widely admitted that sufficiently inertial pairs should sediment by performing a regular DKT oscillation (Drafting-Kissing-Tumbling), the present analysis shows in contrast that a chaotic regime can also exist for such particles, leading to a much slower sedimentation velocity. It consists of a nearly horizontal pair, corresponding to a maximum effective blockage ratio, and performing a quasiperiodic transition to chaos while increasing the particle weight. For less inertial regimes, the classical oblique doublet structure and its complex behavior (multiple stable states and hysteresis, period-doubling cascade and chaotic attractor) are recovered, in agreement with previous work [Aidun, C. K. and Ding, E.-J., “Dynamics of particle sedimentation in a vertical channel: Period-doubling bifurcation and chaotic state,” Phys. Fluids 15, 1612 (2003)]. As a consequence of these various behaviors, the link between the terminal Reynolds number and the non-dimensional driving force is complex: it contains several branches displaying hysteresis as well as various bifurcations. For the range of Reynolds number considered here, a global bifurcation diagram is given.

1.
Aidun
,
C. K.
and
Ding
,
E.-J.
, “
Dynamics of particle sedimentation in a vertical channel: Period-doubling bifurcation and chaotic state
,”
Phys. Fluids
15
,
1612
(
2003
).
2.
Champmartin
,
S.
, “
Matrice de résistance et description du mouvement d’une particule en interaction hydrodynamique et conséquences du confinement asymétrique sur les phénomènes de transfert
,” Ph.D. thesis,
Université d’Angers
,
2006
.
3.
Chorin
,
A. J.
, “
Numerical solution of the Navier-Stokes equations
,”
Math. Comput.
22
(
104
),
745
762
(
1968
).
4.
Cohen
,
J. E.
and
Horowitz
,
P.
, “
Paradoxical behaviour of mechanical and electrical networks
,”
Nature
352
,
699
(
1991
).
5.
Crowe
,
C. T.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
Multiphase Flows With Droplets and Particles
(
CRC Press
,
1998
).
6.
Derksen
,
J.
, “
Simulations of granular bed erosion due to laminar shear flow near the critical shields number
,”
Phys. Fluids
23
(
11
),
113303
(
2011
).
7.
Feng
,
J.
and
Joseph
,
D.
, “
The unsteady motion of solid bodies in creeping flows
,”
J. Fluid Mech.
303
,
83
102
(
1995
).
8.
Feng
,
J.
,
Hu
,
H. H.
, and
Joseph
,
D. D.
, “
Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. I. Sedimentation
,”
J. Fluid Mech.
261
,
95
134
(
1994
).
9.
Feng
,
J.
,
Huang
,
P.
, and
Joseph
,
D.
, “
Dynamic simulation of sedimentation of solid particles in an Oldroyd-B fluid
,”
J. Non-Newtonian Fluid Mech.
63
(
1
),
63
88
(
1996
).
10.
Fortes
,
A. F.
,
Joseph
,
D. D.
, and
Lundgren
,
T. S.
, “
Nonlinear mechanics of fluidization of beds of spherical particles
,”
J. Fluid Mech.
177
,
467
483
(
1987
).
11.
Glowinski
,
R.
,
Pan
,
T.-W.
,
Hesla
,
T.
, and
Joseph
,
D.
, “
A distributed Lagrange multiplier/fictitious domain method for particulate flows
,”
Int. J. Multiphase Flow
25
(
5
),
755
794
(
1999
).
12.
Happel
,
J.
and
Brenner
,
H.
,
Low Reynolds Number Hydrodynamics
(
Prentice-Hall
,
1965
).
13.
Harper
,
E. Y.
and
Chang
,
I.-D.
, “
Drag on a cylinder between parallel walls in Stokes’ flow
,”
Phys. Fluids
10
(
1
),
83
88
(
1967
).
14.
Höfler
,
K.
and
Schwarzer
,
S.
, “
Navier-Stokes simulation with constraint forces: Finite-difference method for particle-laden flows and complex geometries
,”
Phys. Rev. E
61
(
6
),
7146
(
2000
).
15.
Hu
,
H.
, “
Direct simulation of flows of solid-liquid mixtures
,”
Int. J. Multiphase Flow
22
(
2
),
335
352
(
1996
).
16.
Jayaweera
,
K. O. L. F.
and
Mason
,
B. J.
, “
The behaviour of freely falling cylinders and cones in a viscous fluid
,”
J. Fluid Mech.
22
,
709
720
(
1965
).
17.
Pala
,
M. G.
,
Baltazar
,
S.
,
Liu
,
P.
,
Sellier
,
H.
,
Hackens
,
B.
,
Martins
,
F.
,
Bayot
,
V.
,
Wallart
,
X.
,
Desplanque
,
L.
, and
Huant
,
S.
, “
Transport inefficiency in branched-out mesoscopic networks: An analog of the Braess paradox
,”
Phys. Rev. Lett.
108
(
7
),
076802
(
2012
).
18.
Park
,
J.
,
Kwon
,
K.
, and
Choi
,
H.
, “
Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160
,”
KSME Int. J.
12
(
6
),
1200
1205
(
1998
).
19.
Richardson
,
J.
and
Zaki
,
W.
, “
Sedimentation and fluidisation: I
,”
Chem. Eng. Res. Des.
75
,
S82
S100
(
1954
).
20.
Temam
,
R.
, “
Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I)
,”
Arch. Ration. Mech. Anal.
32
(
2
),
135
153
(
1969
).
21.
Uhlmann
,
M.
, “
An immersed boundary method with direct forcing for the simulation of particulate flows
,”
J. Comput. Phys.
209
(
2
),
448
476
(
2005
).
22.
Verjus
,
R.
, “
Etude de la sédimentation de particules en domaine confiné
,” Ph.D. thesis,
University of Lorraine
,
2015
.
23.
Wachmann
,
B.
,
Kalthoff
,
W.
,
Schwarzer
,
S.
, and
Herrmann
,
H. J.
, “
Collective drag and sedimentation: Comparison of simulation and experiment in two and three dimensions
,”
Granular Matter
1
(
2
),
75
82
(
1998
).
24.
Wachs
,
A.
, “
A DEM-DLM/FD method for direct numerical simulation of particulate flows: Sedimentation of polygonal isometric particles in a newtonian fluid with collisions
,”
Comput. Fluids
38
(
8
),
1608
1628
(
2009
).
25.
Wang
,
L.
,
Guo
,
Z. L.
, and
Mi
,
J. C.
, “
Drafting, kissing and tumbling process of two particles with different sizes
,”
Comput. Fluids
96
,
20
34
(
1998
).
26.
Yu
,
Z.
and
Shao
,
X.
, “
A direct-forcing fictitious domain method for particulate flows
,”
J. Comput. Phys.
227
(
1
),
292
314
(
2007
).
You do not currently have access to this content.