We study thermally induced atomization modes in contact free (acoustically levitated) nanoparticle laden fuel droplets. The initial droplet size, external heat supplied, and suspended particle concentration (wt. %) in droplets govern the stability criterion which ultimately determines the dominant mode of atomization. Pure fuel droplets exhibit two dominant modes of breakup namely primary and secondary. Primary modes are rather sporadic and normally do not involve shape oscillations. Secondary atomization however leads to severe shape deformations and catastrophic intense breakup of the droplets. The dominance of these modes has been quantified based on the external heat flux, dynamic variation of surface tension, acoustic pressure, and droplet size. Addition of particles alters the regimes of the primary and secondary atomization and introduces bubble induced boiling and bursting. We analyze this new mode of atomization and estimate the time scale of bubble growth up to the point of bursting using energy balance to determine the criterion suitable for parent droplet rupture. All the three different modes of breakup have been well identified in a regime map determined in terms of Weber number and the heat utilization rate which is defined as the energy utilized for transient heating, vaporization, and boiling in droplets.

1.
M.
Pilch
and
C. A.
Erdman
, “
Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop
,”
Int. J. Multiphase Flow
13
(
6
),
741
(
1987
).
2.
A.
Saha
,
J. D.
Lee
,
S.
Basu
, and
R.
Kumar
, “
Breakup and coalescence characteristics of a hollow cone swirling spray
,”
Phys. Fluids
24
(
12
),
124103
(
2012
).
3.
X.
Gu
,
S.
Basu
, and
R.
Kumar
, “
Dispersion and vaporization of biofuels and conventional fuels in a crossflow pre-mixer
,”
Int. J. Heat Mass Transfer
55
(
1
),
336
(
2012
).
4.
H.
Hirahara
and
M.
Kawahashi
, “
Experimental investigation of viscous effects upon a breakup of droplets in high-speed air flow
,”
Exp. Fluids
13
,
423
(
1992
).
5.
S. A.
Krzeczkowski
, “
Measurement of liquid droplet disintegration mechanisms
,”
Int. J. Multiphase Flow
6
,
227
(
1980
).
6.
E.
Villermaux
and
B.
Bossa
, “
Single-drop fragmentation determines size distribution of raindrops
,”
Nat. Phys.
5
,
697
(
2009
).
7.
Y.
Gan
and
L.
Qiao
, “
Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles
,”
Combust. Flame
158
(
2
),
354
(
2011
).
8.
Y.
Gan
,
Y. S.
Lim
, and
L.
Qiao
, “
Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations
,”
Combust. Flame
159
,
1732
(
2012
).
9.
R.
Scattergood
, U.S. patent application 10/542,770 (January 23, 2004).
10.
R. N.
Mehta
,
M.
Chakraborty
, and
P. A.
Parikh
, “
Nanofuels: Combustion, engine performance and emissions
,”
Fuel
120
,
91
(
2014
).
11.
H.
Tyagi
,
P. E.
Phelan
,
R.
Prasher
,
R.
Peck
,
T.
Lee
,
J. R.
Pacheco
, and
P.
Arentzen
, “
Increased hot-plate ignition probability for nanoparticle-laden diesel fuel
,”
Nano Lett.
8
(
5
),
1410
(
2008
).
12.
A.
James
,
M. K.
Smith
, and
A.
Glezer
, “
Vibration-induced drop atomization and the numerical simulation of low-frequency single-droplet ejection
,”
J. Fluid Mech.
476
,
29
(
2003
).
13.
T.
Gilet
,
N.
Vandewalle
, and
S.
Dorbolo
, “
Controlling the partial coalescence of a droplet on a vertically vibrated bath
,”
Phys. Rev. E
76
,
035302(R)
(
2007
).
14.
T.
Gilet
,
K.
Mulleners
,
J. P.
Lecomte
,
N.
Vandewalle
, and
S.
Dorbolo
, “
Critical parameters for the partial coalescence of a droplet
,”
Phys. Rev. E
75
,
036303
(
2007
).
15.
C. M. J.
Hu
,
L.
Zhang
,
S.
Aryal
,
C.
Cheung
,
R. H.
Fang
, and
L.
Zhang
, “
Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform
,”
Proc. Natl. Acad. Sci. U. S. A.
108
(
27
),
10980
(
2011
).
16.
K.
Cho
,
X. U.
Wang
,
S.
Nie
, and
D. M.
Shin
, “
Therapeutic nanoparticles for drug delivery in cancer
,”
Clin. Cancer Res.
14
(
5
),
1310
(
2008
).
17.
J.
Bardon
,
J.
Bour
,
D.
Del Frari
,
C.
Arnoult
, and
D.
Ruch
, “
Dispersion of cerium-based nanoparticles in an organosilicon plasma polymerized coating: Effect on corrosion protection
,”
Plasma Processes Polym.
6
(
S1
),
S655
(
2009
).
18.
G.
Elham
,
P.
Mahsa
, and
V.
Ramezani
, “
Spray drying of nanoparticles to form fast dissolving glipizide
,”
Asian J. Pharm.
9
,
213
(
2015
).
19.
S.
Basu
,
A.
Saha
, and
R.
Kumar
, “
Thermally induced secondary atomization of droplet in an acoustic field
,”
Appl. Phys. Lett.
100
(
5
),
054101
(
2012
).
20.
B.
Pathak
,
A.
Sanyal
, and
S.
Basu
, “
Experimental study of shape transition in an acoustically levitated and externally heated droplet
,”
J. Heat Transfer
137
(
12
),
121006
(
2015
).
21.
C. P.
Lee
,
A. V.
Anilkumar
, and
T. G.
Wang
, “
Static shape and instability of an acoustically levitated liquid drop
,”
Phys. Fluids A
3
,
2497
(
1991
).
22.
A. V.
Anilkumar
,
C. P.
Lee
, and
T. G.
Wang
, “
Stability of an acoustically levitated and flattened drop: An experimental study
,”
Phys. Fluids A
5
,
2763
(
1993
).
23.
C. P.
Lee
,
A. V.
Anilkumar
, and
T. G.
Wang
, “
Static shape of an acoustically levitated drop with wave–drop interaction
,”
Phys. Fluids
6
,
3554
(
1994
).
24.
C. K.
Law
, “
Internal boiling and superheating in vaporizing multicomponent droplets
,”
AIChE J.
24
(
4
),
626
(
1978
).
25.
G. S.
Jackson
and
C. T.
Avedisian
, “
Combustion of unsupported water-in-n-heptane emulsion droplets in a convection-free environment
,”
Int. J. Heat Mass Transfer
41
(
16
),
2503
(
1998
).
26.
C. T.
Avedisian
and
R. P.
Andres
, “
Bubble nucleation in superheated liquid—liquid emulsions
,”
J. Colloid Interface Sci.
64
(
3
),
438
(
1978
).
27.
B.
Pathak
and
S.
Basu
, “
Deformation pathways and breakup modes in acoustically levitated bicomponent droplets under external heating
,”
Phys. Rev. E
93
(
3
),
033103
(
2016
).
28.
S.
Basu
,
A.
Saha
, and
R.
Kumar
, “
Criteria for thermally induced atomization and catastrophic breakup of acoustically levitated droplet
,”
Int. J. Heat Mass Transfer
59
,
316
(
2013
).
29.
B.
Park
and
R. L.
Armstrong
, “
Laser droplet heating: Fast and slow heating regimes
,”
Appl. Opt.
28
(
17
),
3671
(
1989
).
30.
A.
Saha
,
S.
Basu
, and
R.
Kumar
, “
Scaling analysis: Equivalence of convective and radiative heating of levitated droplet
,”
Appl. Phys. Lett.
100
,
204104
(
2012
).
31.
L. G.
Bremer
,
P.
Walstra
, and
T.
van Vliet
, “
Estimations of the aggregation time of various colloidal systems
,”
Colloids Surf., A
99
(
2
),
121
(
1995
).
32.
B.
Pathak
,
P.
Deepu
,
S.
Basu
, and
R.
Kumar
, “
Modeling of agglomeration inside a droplet with nanosuspensions in an acoustic field
,”
Int. J. Heat Mass Transfer
59
,
161
(
2013
).
33.
C. T.
Avedisian
, “
Effect of pressure on bubble growth within liquid droplets at the superheat limit
,”
J. Heat Transfer
104
(
4
),
750
(
1982
).
34.
B.
Abramzon
and
S.
Sazhin
, “
Convective vaporization of a fuel droplet with thermal radiation absorption
,”
Fuel
85
,
32
(
2006
).
35.
See http://webbook.nist.gov for information about surface tension of n-dodecane.
You do not currently have access to this content.