Compression of monodisperse powder samples in quasistatic conditions is addressed in a pressure range such that particles fragmentation occurs while the solid remains incompressible (typical pressure range of 1–300 MPa for glass powders). For a granular bed made of particles of given size, the existence of three stages is observed during compression and crush up. First, classical compression occurs and the pressure of the granular bed increases along a characteristic curve as the volume decreases. Then, a critical pressure is reached for which fragmentation begins. During the fragmentation process, the granular pressure stays constant in a given volume range. At the end of this second stage, 20%–50% of initial grains are reduced to finer particles, depending on the initial size. Then the compression undergoes the third stage and the pressure increases along another characteristic curve, in the absence of extra fragmentation. The present paper analyses the analogies between the phase transition in liquid-vapour systems and powder compression with crush-up. Fragmentation diagram for a soda lime glass is determined by experimental means. The analogues of the saturation pressure and latent heat of phase change are determined. Two thermodynamic models are then examined to represent the crush-up diagram. The first one uses piecewise functions while the second one is of van der Waals type. Both equations of state relate granular pressure, solid volume fraction, and initial particle diameter. The piecewise functions approach provides reasonable representations of the phase diagram while the van der Waals one fails.

1.
Antoine
,
C.
, “
Tensions des vapeurs: Nouvelle relation entre les tensions et les températures
,”
C. R. Seances Acad. Sci. (in French)
107
,
681
684
(
1888
).
2.
Antonyuk
,
S.
,
Khanal
,
M.
,
Tomas
,
J.
,
Heinrich
,
S.
, and
Mörl
,
L.
, “
Impact breakage of spherical granules: Experimental study and DEM simulation
,”
Chem. Eng. Process.: Process Intensif.
45
(
10
),
838
856
(
2006
).
3.
Bdzil
,
J. B.
,
Menikoff
,
R.
,
Son
,
S. F.
,
Kapila
,
A. K.
, and
Stewart
,
D. S.
, “
Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues
,”
Phys. Fluids
11
(
2
),
378
402
(
1999
).
4.
Bergstrom
,
B. H.
,
Sollenberger
,
C. L.
, and
Mitchell
, Jr.,
W.
, “
Energy aspects of single particle crushing
,”
Trans. AIME
220
,
367
372
(
1961
).
5.
Brin
,
A. Y.
, “
Contribution à l’étude de la couche capillaire et de la pression osmotique
,” Ph.D. dissertation (
Univ. Paris
, Paris,
1956
).
6.
Davison
,
L.
,
Grady
,
D. E.
, and
Shahinpoor
,
M.
,
High-Pressure Shock Compression of Solids. II: Dynamic Fracture and Fragmentation
(
Springer Science & Business Media
,
2012
).
7.
Desmond
,
K. W.
and
Weeks
,
E. R.
, “
Influence of particle size distribution on random close packing of spheres
,”
Phys. Rev. E
90
,
022204
(
2014
).
8.
Einav
,
I.
, “
Breakage mechanics—Part I: Theory
,”
J. Mech. Phys. Solids
55
,
1274
1297
(
2007a
).
9.
Einav
,
I.
, “
Breakage mechanics—Part II: Modelling granular materials
,”
J. Mech. Phys. Solids
55
,
1298
1320
(
2007b
).
10.
Elban
,
W.
and
Chiarito
,
M.
, “
Quasi-static compaction study of coarse HMX explosive
,”
Powder Technol.
46
(
2–3
),
181
193
(
1986
).
11.
Fortov
,
V. E.
,
Altshuler
,
L. V.
,
Trunin
,
R. F.
, and
Funtikov
,
A. I.
,
High-Pressure Shock Compression of Solids VII: Shock Waves and Extreme States of Matter
(
Springer
,
2013
).
12.
Griffith
,
A. A.
, “
The phenomena of rupture and flow in solids
,”
Philos. Trans. R. Soc., A
221
,
163
198
(
1921
).
13.
Hall
,
E. O.
, “
The deformation and ageing of mild steel: III discussion of results
,”
Proc. Phys. Soc., London, Sect. B
64
,
747
753
(
1951
).
14.
Hostler
,
S. R.
, “
Wave propagation in granular materials
,” Ph.D. dissertation (
California Institute of Technology
,
2004
).
15.
Jandacka
,
P.
,
Hlavac
,
L. M.
,
Madr
,
V.
,
Sancer
,
J.
, and
Stanek
,
F.
, “
Measurement of specific fracture energy and surface tension of brittle materials in powder form
,”
Int. J. Fract.
159
(
1
),
103
110
(
2009
).
16.
Kapila
,
A. K.
,
Menikoff
,
R.
,
Bdzil
,
J. B.
,
Son
,
S. F.
, and
Stewart
,
D. S.
, “
Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations
,”
Phys. Fluids
13
(
10
),
3002
3024
(
2001
).
17.
Kuo
,
K. K.
,
Yang
,
V.
, and
Moore
,
B. B.
, “
Intragranular stress, particle-wall friction and speed of sound in granular propellant beds
,”
J. Ballist.
4
(
1
),
697
730
(
1980
).
18.
Lade
,
P. V.
,
Yamamuro
,
J. A.
, and
Bopp
,
P. A.
, “
Significance of particle crushing in granular materials
,”
J. Geotech. Eng.
122
(
4
),
309
316
(
1996
).
19.
Marsh
,
S. P.
,
LASL Hugoniot Data
(
University of California Press
,
1980
).
20.
Menikoff
,
R.
and
Plohr
,
B. J.
, “
The Riemann problem for fluid flow of real materials
,”
Rev. Mod. Phys.
61
(
1
),
75
(
1989
).
21.
Mott
,
N. F.
, “
Fracture of metals: Theoretical considerations
,”
Eng. Fract. Mech.
165
(
4275
),
16
18
(
1948
).
22.
Mott
,
N. F.
, “
Fragmentation of shell casings and the theory of rupture in metals
,” in
Fragmentation of Rings and Shells
(
Springer Berlin Heidelberg
,
2006
), pp.
295
325
.
23.
McSaveney
,
M. J.
and
Davies
,
T. R.
, “
Surface energy is not one of the energy losses in rock communition
,”
Eng. Geol.
109
(
1
),
109
113
(
2009
).
24.
Moreno-Atanasio
,
R.
and
Ghadiri
,
M.
, “
Mechanistic analysis and computer simulation of impact breakage of agglomerates: Effect of surface energy
,”
Chem. Eng. Sci.
61
(
8
),
2476
2481
(
2006
).
25.
National Institute of Standard and Technology (NIST), Chemistry WebBook, http://webbook.nist.gov/chemistry/.
26.
Passman
,
S. L.
,
Nunziato
,
J. W.
, and
Walsh
,
E. K.
,
A Theory of Multiphase Mixtures
(
Springer
,
New York
,
1984
), pp.
286
325
.
27.
Patel
,
N. C.
and
Teja
,
A. S.
, “
A new cubic equation of state for fluids and fluid mixtures
,”
Chem. Eng. Sci.
37
,
463
473
(
1982
).
28.
Peng
,
D. Y.
and
Robinson
,
D. B.
, “
A new two-constant equation of state
,”
Ind. Eng. Chem. Fundam.
15
,
59
64
(
1976
).
29.
Petch
,
N. J.
, “
The cleavage strength of polycrystals
,”
J. Iron Steel Inst., London
173
,
25
28
(
1953
).
30.
Redlich
,
O.
and
Kwong
,
J. N. S.
, “
On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions
,”
Chem. Rev.
44
,
233
244
(
1949
).
31.
Reiss
,
N. R.
,
Frisch
,
H. L.
, and
Lebowitz
,
J. L. L.
, “
Statistical mechanics of rigid spheres
,”
J. Chem. Phys.
31
,
369
380
(
1959
).
32.
Rogue
,
X.
,
Rodriguez
,
G.
,
Haas
,
J. F.
, and
Saurel
,
R.
, “
Experimental and numerical investigation of the shock-induced fluidization of a particles bed
,”
Shock Waves
8
(
1
),
29
45
(
1998
).
33.
Saurel
,
R.
,
Petitpas
,
F.
, and
Abgrall
,
R.
, “
Modelling phase transition in metastable liquids: Application to cavitating and flashing flows
,”
J. Fluid Mech.
607
,
313
350
(
2008
).
34.
Saurel
,
R.
,
Favrie
,
N.
,
Petitpas
,
F.
,
Lallemand
,
M. H.
, and
Gavrilyuk
,
S. L.
, “
Modelling dynamic and irreversible powder compaction
,”
J. Fluid Mech.
664
,
348
396
(
2010
).
35.
Span
,
R.
and
Wagner
,
W.
, “
A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa
,”
J. Phys. Chem. Ref. Data
25
,
1509
1596
(
1996
).
36.
Suehiro
,
Y.
,
Nakajima
,
M.
,
Yamada
,
K.
, and
Uematsu
,
M.
, “
Critical parameters of {xCO2 + (1 − x)CHF3} for x = (1.0000, 0.7496, 0.5013, and 0.2522)
,”
J. Chem. Thermodyn.
28
,
1153
1164
(
1996
).
37.
van der Waals
,
J. D.
, “
On the continuity of the gaseous and liquid states
,” Ph.D. dissertation (
University of Leiden
, Leiden,
1873
).
You do not currently have access to this content.