This paper reports a fundamental investigation on the aerodynamics of two-dimensional flapping wings in tandem configuration in forward flight. Of particular interest are the effects of phase angle (φ) and center-to-center distance (L) between the front wing and the rear wing on the aerodynamic force generation at a Reynolds number of 5000. Both experimental and numerical methods were employed. A force sensor was used to measure the time-history aerodynamic forces experienced by the two wings and digital particle image velocimetry was utilized to obtain the corresponding flow structures. Both the front wing and the rear wing executed the same simple harmonic motions with φ ranging from −180° to 180° and four values of L, i.e., 1.5c, 2c, 3c, and 4c (c is the wing chord length). Results show that at fixed L = 2c, tandem wings perform better than the sum of two single wings that flap independently in terms of thrust for phase angle approximately from −90° to 90°. The maximum thrust on the rear wing occurs during in-phase flapping (φ = 0°). Correlation of transient thrust and flow structure indicates that there are generally two types of wing-wake interactions, depending on whether the rear wing crosses the shear layer shed from the front wing. Finally, increasing wing spacing has similar effect as reducing the phase angle, and an approximate mathematical model is derived to describe the relationship between these two parameters.

1.
T. J.
Mueller
,
Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications
(
AIAA, Reston
,
2001
).
2.
R.
Knoller
,
Die Gesetze des Luftwiderstandes
(
Verlag des Österreichischer Flugtechnischen Vereines, Wien
,
1909
).
3.
A.
Betz
, “
Ein Beitrag zur Erklaerung des Segelfluges
,”
Z. Flugtech. Motorluftschiffahrt
3
,
269
272
(
1912
).
4.
T.
von Kármán
and
J. M.
Burgers
,
General Aerodynamics Theory-Perfect Fluids
(
Springer
,
Berlin
,
1935
).
5.
J. M.
Anderson
,
K.
Streitlien
,
D. S.
Barrett
, and
M. S.
Triantafyllou
, “
Oscillating foils of high propulsive efficiency
,”
J. Fluid Mech.
360
,
41
72
(
1998
).
6.
J. C. S.
Lai
and
M. F.
Platzer
, “
Jet characteristics of a plunging airfoil
,”
AIAA J.
37
(
12
),
1529
1537
(
1999
).
7.
K. B.
Lua
,
T. T.
Lim
, and
K. S.
Yeo
, “
Wake-structure formation of a heaving two-dimensional elliptic airfoil
,”
AIAA J.
45
(
7
),
1571
1583
(
2007
).
8.
D. E.
Alexander
, “
Unusual phase relationship between forewings and hindwings in flying dragonflies
,”
J. Exp. Biol.
109
,
379
383
(
1984
).
9.
G.
Rüppell
and
D.
Hilfert
, “
The flight of the relict dragonfly Epiophlebia superstes in comparison with that of the modern Odonata (Anisozygoptera: Epiophlebiidae)
,”
Odonatologica
22
,
295
309
(
1993
).
10.
A. L. R.
Thomas
,
G. K.
Taylor
,
R. B.
Srygley
,
R. L.
Nudds
, and
R. J.
Bomphrey
, “
Dragonfly flight: Free-flight and tethered flow visualizations reveal a diverse array of unsteady flight-generating mechanisms, controlled primarily via angle of attack
,”
J. Exp. Biol.
207
,
4299
4323
(
2004
).
11.
Y. S.
Lian
,
T.
Broering
,
K.
Hord
, and
R.
Prater
, “
The characterization of tandem and corrugated wings
,”
Prog. Aerosp. Sci.
65
,
41
69
(
2014
).
12.
M.
Yamamoto
and
K.
Isogai
, “
Measurement of unsteady fluid dynamic forces for a mechanical dragonfly model
,”
AIAA J.
43
(
12
),
2475
2480
(
2005
).
13.
I.
Akhtar
,
R.
Mittal
,
G.
Lauder
, and
E.
Drucker
, “
Hydrodynamics of a biologically inspired tandem flapping foil configuration
,”
Theor. Comput. Fluid Dyn.
21
(
3
),
155
170
(
2007
).
14.
J. R.
Usherwood
and
F. O.
Lehmann
, “
Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl
,”
J. R. Soc., Interface
5
,
1303
1307
(
2008
).
15.
K. B.
Lim
and
W. B.
Tay
, “
Numerical analysis of the s1020 airfoils in tandem under different flapping configurations
,”
Acta Mech. Sin.
26
,
191
207
(
2010
).
16.
S. L.
Lan
and
M.
Sun
, “
Aerodynamic force and flow structures of two airfoils in flapping motions
,”
Acta Mech. Sin.
17
,
310
331
(
2001
).
17.
H.
Huang
and
M.
Sun
, “
Dragonfly forewing-hindwing interaction at various flight speeds and wing phasing
,”
AIAA J.
45
(
2
),
508
511
(
2007
).
18.
T.
Broering
and
Y. S.
Lian
, “
The effect of phase angle and wing spacing on tandem flapping wings
,”
Acta Mech. Sin.
28
,
1557
1571
(
2012
).
19.
T.
Broering
and
Y. S.
Lian
, “
Numerical study of tandem flapping wing aerodynamics in both two and three dimensions
,”
Comput. Fluids
115
,
124
139
(
2015
).
20.
B. M.
Boschitsch
,
P. A.
Dewey
, and
A. J.
Smits
, “
Propulsive performance of unsteady tandem hydrofoils in an in-line configuration
,”
Phys. Fluids
26
,
051901
(
2014
).
21.
W. Q.
Gong
,
B. B.
Jia
, and
G.
Xi
, “
Experimental study on mean thrust of two plunging wings in tandem
,”
AIAA J.
53
(
6
),
1693
1705
(
2015
).
22.
Y.
Zheng
,
Y.
Wu
, and
H.
Tang
, “
Force measurements of flexible tandem wings in hovering and forward flights
,”
Bioinspiration Biomimetics
10
,
016021
(
2015
).
23.
Y. H.
Chen
,
M.
Skote
,
Y.
Zhao
, and
W. M.
Huang
, “
Dragonfly (sympetrum flaveolum) flight: Kinematic measurement and modelling
,”
J. Fluids Struct.
40
,
115
126
(
2013
).
24.
R. D.
Keane
and
R. J.
Adrian
, “
Optimization of particle image velocimeters. I. Double pulsed systems
,”
Meas. Sci. Technol.
1
(
11
),
1202
1215
(
1990
).
25.
K. B.
Lua
,
T. T.
Lim
, and
K. S.
Yeo
, “
Aerodynamic forces and flow fields of a two-dimensional hovering wing
,”
Exp. Fluids
45
,
1047
(
2008
).
26.
H.
Lu
,
K. B.
Lua
,
T. T.
Lim
, and
K. S.
Yeo
, “
Ground effect on the aerodynamics of a two-dimensional oscillating airfoil
,”
Exp. Fluids
55
,
1787
(
2014
).
27.
X. H.
Zhang
, “
Aerodynamics of two-dimensional flapping wing(s)
,” Ph.D. dissertation (
National University of Singapore
,
2013
).
28.
F. M.
Bos
,
D.
Lentink
,
B. W.
van Oudheusden
, and
H.
Bijl
, “
Influence of wing kinematics on aerodynamic performance in hovering insect flight
,”
J. Fluid Mech.
594
,
341
368
(
2008
).
29.
K. B.
Lua
,
Y. J.
Lee
,
T. T.
Lim
, and
K. S.
Yeo
, “
Aerodynamic effects of elevating motion on hovering rigid hawkmothlike wings
,”
AIAA J.
54
,
2247
2264
(
2016
).
30.
Y. J.
Lee
,
K. B.
Lua
,
T. T.
Lim
, and
K. S.
Yeo
, “
A quasi-steady aerodynamic model for flapping flight with improved adaptability
,”
Bioinspiration Biomimetics
11
,
036005
(
2016
).
31.
Y. J.
Lee
,
K. B.
Lua
, and
T. T.
Lim
, “
Aspect ratio effects on revolving wings with Rossby number consideration
,”
Bioinspiration Biomimetics
11
,
056013
(
2016
).
32.
D. E.
Levy
and
A.
Seifert
, “
Simplified dragonfly airfoil aerodynamics at Reynolds numbers below 8000
,”
Phys. Fluids
21
,
071901
(
2009
).
33.
R. I.
Issa
, “
Solution of the implicitly discretized fluid flow equations by operator-splitting
,”
J. Comput. Phys.
62
,
40
65
(
1986
).
34.
P. R.
Spalart
and
S. R.
Allmaras
, “A one-equation turbulence model for aerodynamic flows,” AIAA Paper No. 92-0439, 1992.
35.
M.
Jones
and
N. K.
Yamaleev
, “Adjoint-based shape and kinematics optimization of flapping wing propulsive efficiency,” AIAA Paper 2013-2472, 2013.
36.
M. M.
Zdravkovich
,
Flow Around Circular Cylinders; Volume 1: Fundamentals
(
Oxford Science Publications
,
1997
).
You do not currently have access to this content.